深度学习手写数字识别python
时间: 2023-07-25 07:16:16 浏览: 105
手写数字识别是深度学习中的一个经典问题,可以使用Python实现。以下是一个简单的实现步骤:
1. 数据集准备:使用MNIST数据集作为训练和测试数据。MNIST数据集包含60,000张28x28的灰度图像作为训练数据,以及10,000张测试图像。
2. 数据预处理:将像素值归一化到0到1之间,并将图像转换为一维向量。
3. 模型设计:使用深度学习框架TensorFlow或Keras构建卷积神经网络(CNN)模型,包含卷积层、池化层和全连接层。
4. 模型训练:将训练数据输入到模型中进行训练,使用交叉熵作为损失函数,使用随机梯度下降或Adam优化器进行优化。
5. 模型评估:使用测试数据评估模型性能,计算准确率等指标。
以下是一个简单的Python代码示例:
```
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
# 加载数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0
# 构建模型
model = models.Sequential([
layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
layers.MaxPooling2D((2,2)),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(10)
])
# 编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练模型
model.fit(train_images.reshape(-1, 28, 28, 1), train_labels, epochs=10)
# 评估模型
test_loss, test_acc = model.evaluate(test_images.reshape(-1, 28, 28, 1), test_labels, verbose=2)
print(test_acc)
```
这段代码使用TensorFlow构建了一个包含卷积层、池化层和全连接层的CNN模型,并使用MNIST数据集进行训练和测试。
阅读全文