data_test = rand(16, 1000); %数据引入 channel_names = {'channel 1', 'channel 2', 'channel 3', 'channel 4', 'channel 5', ... 'channel 6', 'channel 7', 'channel 8', 'channel 9', 'channel 10', ... 'channel 11', 'channel 12', 'channel 13', 'channel 14', 'channel 15', 'channel 16'}; %各通道名称设置 colors = lines(16); %各通道颜色设置 figure; % 绘制每个通道的曲线 for i = 1:size(data_test, 1) plot(data_test(i, :)+(i-1)*2, 'Color', colors(i,:)); hold on; end set(gca,'YTick',(0:15)*2) set(gca,'YTickLabel',channel_names) ylim([0, 31]) ylabel('Channel Names'); %。 % 定义滤波器 b = [0.1 0.2 0.3 0.2 0.1]; % 滤波器系数 a = 1; % 分母系数 % 对数据进行滤波 data_filtered = zeros(size(data_test)); for i = 1:size(data_test, 1) data_filtered(i,:) = filter(b, a, data_test(i,:)); end % 绘制滤波后的曲线 figure; for i = 1:size(data_filtered, 1) plot(data_filtered(i, :)+(i-1)*2, 'Color', colors(i,:)); hold on; end set(gca,'YTick',(0:15)*2) set(gca,'YTickLabel',channel_names) ylim([0, 31]) ylabel('Channel Names'); title('Filtered Data');可以帮我把这段代码转换成python语言吗
时间: 2023-06-18 12:03:39 浏览: 145
Sure, here's the Python version of the code:
```python
import numpy as np
import matplotlib.pyplot as plt
# 数据引入
data_test = np.random.rand(16, 1000)
# 各通道名称设置
channel_names = ['channel 1', 'channel 2', 'channel 3', 'channel 4', 'channel 5', 'channel 6', 'channel 7', 'channel 8', 'channel 9', 'channel 10', 'channel 11', 'channel 12', 'channel 13', 'channel 14', 'channel 15', 'channel 16']
# 各通道颜色设置
colors = plt.cm.tab20(np.linspace(0, 1, 16))
# 绘制每个通道的曲线
plt.figure()
for i in range(data_test.shape[0]):
plt.plot(data_test[i, :] + (i-1)*2, color=colors[i])
plt.hold(True)
plt.gca().set_yticks(np.arange(0, 31, 2))
plt.gca().set_yticklabels(channel_names)
plt.ylim([0, 31])
plt.ylabel('Channel Names')
# 定义滤波器
b = np.array([0.1, 0.2, 0.3, 0.2, 0.1]) # 滤波器系数
a = 1 # 分母系数
# 对数据进行滤波
data_filtered = np.zeros_like(data_test)
for i in range(data_test.shape[0]):
data_filtered[i, :] = np.convolve(data_test[i, :], b, mode='same')
# 绘制滤波后的曲线
plt.figure()
for i in range(data_filtered.shape[0]):
plt.plot(data_filtered[i, :] + (i-1)*2, color=colors[i])
plt.hold(True)
plt.gca().set_yticks(np.arange(0, 31, 2))
plt.gca().set_yticklabels(channel_names)
plt.ylim([0, 31])
plt.ylabel('Channel Names')
plt.title('Filtered Data')
```
注意,Python中没有`hold`函数,我们可以使用`plt.hold(True)`来实现同样的效果。另外,Python中的`lines`函数已被弃用,我们可以使用`plt.cm`中的`tab20`等函数来获取颜色列表。
阅读全文