pytorch实现bert中文多分类

时间: 2023-09-25 11:06:44 浏览: 91
### 回答1: 要用PyTorch实现BERT的中文多分类任务,可以按照以下步骤进行: 1. 准备数据:首先需要将中文多分类数据集准备好,并对其进行处理,使其适合输入BERT模型。可以使用PyTorch提供的Dataset和DataLoader类来加载数据集,并将文本数据转化为BERT模型需要的张量形式。 2. 加载预训练模型:PyTorch提供了许多已经在海量文本数据上预训练好的BERT模型。可以使用HuggingFace提供的transformers库中的预训练模型进行加载。 3. 修改网络结构:加载预训练模型后,需要对其进行微调,以适应中文多分类任务。可以添加一个全连接层,将预训练模型的输出连接到全连接层,从而得到最终的分类结果。 4. 训练模型:将准备好的数据集输入到BERT模型中,使用反向传播算法更新模型参数,直到训练损失收敛。 5. 模型评估:使用测试集对模型进行评估,可以计算准确率、精度、召回率等指标,以评估模型的性能。 以上是使用PyTorch实现BERT中文多分类的大致步骤。具体实现需要参考相关文档和代码。 ### 回答2: PyTorch是一个非常流行的深度学习库,可以用于实现BERT中文多分类任务。下面我将简要介绍如何使用PyTorch实现这个任务。 首先,我们需要安装PyTorch和transformers(一个用于自然语言处理的库,其中包括了预训练的BERT模型)。 接下来,我们需要加载预训练的BERT模型和tokenizer。你可以通过以下代码加载中文的BERT模型: ```python from transformers import BertForSequenceClassification, BertTokenizer model_name = 'bert-base-chinese' num_labels = 10 # 根据你的分类任务设定类别数量 tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForSequenceClassification.from_pretrained(model_name, num_labels=num_labels) ``` 然后,我们需要加载和预处理我们的数据。你可以使用PyTorch的Dataset和DataLoader来完成这个任务。你需要将你的文本数据转换为BERT可以理解的格式: ```python # 假设你的数据是一个包含文本和标签的列表 data = [ {'text': '这是文本1', 'label': 0}, {'text': '这是文本2', 'label': 1}, # 更多样本... ] # 将文本转换为BERT可以理解的格式 inputs = tokenizer.batch_encode_plus( [item['text'] for item in data], pad_to_max_length=True, max_length=512, # 根据你的文本长度设定 truncation=True, return_tensors='pt' ) # 创建PyTorch的Dataset dataset = torch.utils.data.TensorDataset( inputs['input_ids'], inputs['attention_mask'], torch.tensor([item['label'] for item in data]) ) # 创建PyTorch的DataLoader dataloader = torch.utils.data.DataLoader( dataset, batch_size=16, # 根据你的显存大小设定 shuffle=True ) ``` 最后,我们可以开始训练模型。下面是一个非常简单的训练循环: ```python device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5) for epoch in range(10): # 根据你的训练需求设定迭代次数 model.train() for input_ids, attention_mask, labels in dataloader: input_ids = input_ids.to(device) attention_mask = attention_mask.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(input_ids, attention_mask=attention_mask, labels=labels) loss = outputs.loss loss.backward() optimizer.step() ``` 这是一个简单的PyTorch实现BERT中文多分类的示例。你可以根据你的具体任务需求进行适当的修改和调整。同时,你可能还需要评估模型和保存/加载模型等操作。 ### 回答3: PyTorch是一个开源深度学习框架,可以方便地实现BERT中文多分类任务。下面是一个使用PyTorch实现BERT中文多分类的简单示例: 1. 数据准备:首先,需要准备用于训练和测试的中文文本数据集。数据集应包含已经标注好类别的样本。 2. 数据预处理:使用中文分词工具对文本数据进行分词处理,并根据需要进行数据清洗和处理。可以使用NLTK或jieba等开源中文分词工具。 3. BERT模型加载:从Hugging Face的Transformers库中导入预训练的BERT模型和tokenizer。可以选择不同的中文BERT模型,如BERT-Base、BERT-Large等。 4. 构建模型:使用PyTorch构建BERT分类模型。根据需要,可以添加dropout层、全连接层等。 5. 设置优化器和损失函数:选择一个合适的优化器和损失函数,如Adam优化器和交叉熵损失函数。 6. 训练模型:使用训练数据来训练BERT模型。可以选择合适的epochs、batch size等参数。 7. 模型评估:使用测试数据对训练好的模型进行评估。计算模型在测试集上的准确率、精确率、召回率等指标。 8. 模型应用:使用已经训练好的模型对新的中文文本进行分类预测。 需要注意的是,以上是一个简要的流程,实际应用中还需要对数据进行进一步处理和优化,例如处理不平衡的类别分布、调整模型参数等。此外,还可以使用交叉验证等技术来进一步提高模型的性能。

相关推荐

使用pytorch实现BERT语义相似度计算可以分为以下几个步骤: 步骤1:准备数据 首先,需要导入必要的库和模型,如torch、torchvision、transformers等。然后,加载预训练的BERT模型和Tokenizer,如BertTokenizer和BertModel。接着,将输入的文本进行分词处理,并使用Tokenizer将分词后的文本转换为BERT模型可以接受的格式。 步骤2:数据预处理 在此步骤中,需要对输入的文本进行预处理。BERT模型的输入包括input_ids、attention_mask和token_type_ids。input_ids是文本的token序列,attention_mask用于标记哪些token是有效的,token_type_ids用于区分输入的文本句子对。 步骤3:加载BERT模型 使用transformers库加载预训练的BERT模型,如BertModel。然后,将预处理后的数据作为输入传入BERT模型,获取模型的输出。 步骤4:计算语义相似度 BERT模型的输出是一个包含表示文本语义信息的隐藏向量,可以使用这些向量计算语义相似度。常见的计算方式包括余弦相似度和欧氏距离等。 步骤5:评估语义相似度 为了评估语义相似度的性能,可以使用一些标准的评估指标,如Pearson相关系数、Spearman相关系数和Kendall相关系数等。 步骤6:模型训练和优化 可以使用已标注的语义相似度数据进行模型的训练,使用优化方法如反向传播算法和随机梯度下降等来优化模型的参数。 步骤7:模型应用 完成模型的训练后,可以将其应用于实际的语义相似度计算任务中。通过输入两个文本,经过预处理和BERT模型的计算,可以得到它们之间的语义相似度分数。 上述是使用pytorch实现BERT语义相似度计算的主要步骤,具体的实现细节可以根据具体情况和需求进行调整和完善。
### 回答1: PyTorch-BERT可以用于多标签任务。多标签任务是指一个样本可以同时被分配多个标签,而不是只有一个唯一的标签。PyTorch-BERT可以通过微调(fine-tuning)来处理多标签任务,具体步骤如下: 1. 数据预处理:首先将原始数据转换为特定的输入格式,即将每个样本编码为输入序列。对于文本分类任务,可以使用tokenizer将输入文本转换为BERT模型对应的输入格式。同时,每个样本的标签也需要进行处理,通常使用独热编码或多标签编码的方式表示多个标签。 2. 模型微调:使用经过预训练的BERT模型,将其权重加载到PyTorch模型中。然后将加载的模型与多标签分类器(如全连接层)结合,以适应多标签任务的需求。微调的目标是让BERT模型能够更好地适应特定的多标签任务。 3. 训练与评估:使用经过微调的模型对训练数据进行训练,并在验证集上进行评估。在训练过程中,通常使用交叉熵损失函数来计算模型的损失,并使用优化算法(如Adam)来更新模型的参数。 4. 预测:在模型训练完成后,可以使用经过微调的模型对新的未标记样本进行预测。模型将输出一个概率分布,表示每个标签是否存在的可能性。可以根据设定的阈值,将概率高于阈值的标签作为模型的预测结果。 总而言之,PyTorch-BERT可以通过微调的方式来处理多标签任务。在微调过程中,需要将BERT模型与多标签分类器结合,并进行相应的训练和评估。通过这种方式,PyTorch-BERT可以应用于各种多标签分类任务,如文本分类、图像标注等。 ### 回答2: PyTorch是一个开源的机器学习框架,它提供了一种强大的编程环境,可以用于构建和训练各种深度学习模型。BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的自然语言处理模型,它能够有效地处理各种自然语言任务。 在PyTorch中使用BERT进行多标签分类任务,需要进行以下几个步骤: 1. 数据预处理:将文本数据转换为适合BERT模型输入的格式。首先,需要将文本分词并添加特殊标记(如"[CLS]"和"[SEP]")来标记句子的开头和结束。然后,将分词后的文本转换为词向量,可以使用BERT的预训练模型来获取词向量。 2. 构建模型:使用PyTorch构建多标签分类模型。可以使用BERT作为基本模型,然后添加适当的全连接层来实现多标签分类。这些全连接层可以将BERT模型的输出映射到具体的标签。在模型的训练过程中,可以使用交叉熵损失函数和梯度下降方法来优化模型的参数。 3. 模型训练:使用标注好的数据集对构建的模型进行训练。可以使用PyTorch提供的优化器(如AdamOptimizer)和内置的训练循环来简化训练过程。 4. 模型评估:使用测试集评估训练得到的模型的性能。可以使用各种指标(如准确率、精确率、召回率和F1分数)来评估模型的多标签分类性能。 总结起来,使用PyTorch和BERT进行多标签分类任务,需要进行数据预处理、模型构建、模型训练和模型评估等步骤。通过合理设计模型结构和使用适当的优化算法,可以实现高效准确的多标签分类。 ### 回答3: PyTorch是一个很流行的深度学习框架,而BERT是一个非常强大的预训练模型,可以用于自然语言处理任务。当我们要处理多标签分类问题时,可以使用PyTorch和BERT的组合来解决。 多标签分类是指一个样本可以被分配到多个类别中,而不仅仅是一个类别。在使用PyTorch和BERT进行多标签分类时,我们首先需要对文本数据进行处理。我们可以使用BERT模型的tokenizer将文本转换为对应的token,然后将其转化为PyTorch的张量。 接下来,我们可以使用BERT模型进行特征提取。BERT模型可以将输入的token序列编码成固定长度的向量表示,这样可以保留输入句子的语义信息。通过BERT模型的输出,我们可以获取每个token的向量表示。 对于多标签分类问题,我们可以使用全连接层或者其他一些分类器来预测每个类别的概率。我们可以将BERT模型的输出连接到一个全连接层中,然后使用激活函数(如sigmoid函数)将输出的概率限制在0和1之间。 接着,我们可以使用交叉熵损失函数来计算模型的损失,并使用反向传播算法来更新模型的参数。在训练过程中,我们可以使用一些评估指标(如精确率、召回率、F1分数等)来评估模型在多标签分类任务上的性能。 为了优化模型的训练,我们可以使用一些技巧,如学习率调整、正则化、批量归一化等。此外,还可以使用数据增强技术来增加训练数据的多样性,从而提升模型的泛化能力。 总结来说,通过使用PyTorch和BERT的组合,我们可以很方便地解决多标签分类问题。PyTorch提供了灵活的深度学习框架,而BERT则是一个强大的预训练模型,它们的结合可以帮助我们构建准确度高且性能优良的多标签分类模型。
PyTorch的BERT中文文本分类是一个存储库,包含了用于中文文本分类的预训练BERT模型的PyTorch实现。该存储库的代码结构包括了pybert和callback两个文件夹,其中pybert文件夹包含了与BERT模型相关的代码文件,而callback文件夹包含了与训练过程中的回调函数相关的代码文件。 首先,构造输入样本,然后进行分词和词向序号的转换。通过使用BertTokenizer.from_pretrained(model_name)方法,我们可以加载预训练的BERT模型,并将输入样本进行分词和词向序号的转换。样本经过分词后,通过tokenizer.convert_tokens_to_ids方法将分词后的文本转换为对应的词向序号,最后将转换后的输入样本转换为torch.LongTensor类型的张量。 与构建训练集数据迭代器类似,我们还需要构建验证集的数据迭代器。首先,将验证集的样本进行分词和词向序号的转换,然后将转换后的输入样本和对应的标签封装为TensorDataset类型的数据集。最后,使用DataLoader方法构建数据迭代器,设置batch_size为1,shuffle参数为True,以便在验证过程中对数据进行洗牌。 总结来说,PyTorch的BERT中文文本分类是一个用于中文文本分类的预训练BERT模型的PyTorch实现。我们可以通过构造输入样本和构建数据迭代器来进行文本分类任务。123 #### 引用[.reference_title] - *1* [BERT-中文文本分类-pytorch:此存储库包含用于文本分类的预训练BERT模型的PyTorch实现](https://download.csdn.net/download/weixin_42107561/15015956)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Pytorch——BERT 预训练模型及文本分类(情感分类)](https://blog.csdn.net/qq_38563206/article/details/121106374)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
### 回答1: pyTorch bert中文情感分析是一种使用pyTorch框架实现的自然语言处理技术,可以对中文文本进行情感分类,即将文本分类为正面、中性或负面情感。该技术通常应用于社交媒体、电子商务等领域,可以帮助企业更好地了解客户需求和市场趋势。 ### 回答2: PyTorch BERT模型是一种深度学习模型,能够通过对文本进行输入和分析来预测情感。该模型使用预处理的中文语料库并使用自然语言处理技术对文本进行特性提取,以确定情感分析结果。对于情感分析任务,在PyTorch BERT中使用的是多分类任务,其中类别包括正面情感、中性情感和负面情感。 PyTorch BERT通过在大量文本数据上进行训练,从而能够自动捕捉输入文本的情感。在进行情感分析时,模型首先将输入文本转换为向量形式并传递给神经网络层。网络层会向前传递文本向量并学习如何识别各种情感,然后输出与输入文本匹配的最接近的预测情感。 PyTorch BERT的主要优点是其在处理中文文本情感分析方面表现出色。该模型能够处理大量文本数据,并从中提取相关文本特征。此外,PyTorch BERT使用深度学习方法完成情感分析,因此它的预测准确率很高,能够处理复杂的情感表达和复杂的句子结构。 尽管PyTorch BERT在情感分析中的表现非常出色,但在使用此种方法时,需要大量的语料库和GPU运算来训练和测试模型。此外,PyTorch BERT是基于神经网络的模型,可能对数据的极端值和异常数据非常敏感。因此,对于情感分析任务,建议使用多个模型来进行预测并集成结果以提高预测准确性。 总之,PyTorch BERT是一种优秀的情感分析模型,能够有效处理中文表达的情感并提高情感分析准确性。 ### 回答3: PyTorch Bert(Bidirectional Encoder Representations from Transformers)是一种基于神经网络的自然语言处理技术,可用于中文情感分析。情感分析是一种人工智能领域,旨在使计算机能够自动分析、检测和表示人类的情感状态。 PyTorch Bert是在谷歌的Transformer模型基础上进行改进的。Transformer模型是一种用于自然语言处理的神经网络模型,它基于编码器-解码器结构,并使用了自注意力机制。Transformer模型可以并行计算,并且在使用较少数据时表现优异。 PyTorch Bert可以将中文文本表示为向量,并进行情感分析。它以预处理的方式从大量文本语料库中学习而来,使用无监督的方式对文本进行编码和表示。这使得PyTorch Bert在处理自然语言时表现出色,尤其是在中文语境下。 在中文情感分析中,PyTorch Bert可以自动分类文本信息,将其分为积极、中性和消极三类,或者更详细地将其分为多个情感类别。该技术在社交媒体、评论区、新闻报道、电子邮件等方面均有应用。比如,可以应用在社交媒体监控中,帮助企业深入洞察用户对其产品或品牌的情感倾向,或者帮助政府了解公众对政策的反应。 总之,PyTorch Bert是一个强大的自然语言处理技术,可用于中文情感分析等多种应用。它可以帮助人们更准确地理解文本信息中的情感色彩,从而更好地理解用户需求或公众反应,改进相关产品或政策。
在PyTorch中安装BERT,你可以按照以下步骤进行操作: 1. 首先,打开命令行界面。 2. 输入以下命令来安装名为pytorch_pretrained_bert/transformers的软件包:pip install pytorch_pretrained_bert/transformers,并按回车键确认。 3. 等待安装完成,通常只需要20秒左右。安装成功后,你就可以在PyTorch中使用BERT了。\[1\] 如果你想了解如何在PyTorch中使用具体向量,可以参考以下代码示例: import torch import numpy as np index = torch.from_numpy(np.array(\[\[1, 2, 0\], \[2, 0, 1\]\])).type(torch.LongTensor) index = index\[:, :, None\].expand(-1, -1, 10) print(index) 这段代码将创建一个具有特定数值的张量,并对其进行操作。你可以根据自己的需求修改代码中的数值和操作。\[2\] 如果你想实现两个矩阵的转置,可以使用以下代码示例: import torch import numpy as np index = torch.from_numpy(np.array(\[\[1, 2, 0\], \[2, 0, 1\]\])).type(torch.LongTensor) print(index) print(index.transpose(-1, -2)) 这段代码将创建一个矩阵,并对其进行转置操作。你可以根据自己的需求修改代码中的矩阵。\[3\] 希望这些信息对你有所帮助! #### 引用[.reference_title] - *1* [Anaconda,pytorch如何安装中文版的BERT和使用](https://blog.csdn.net/qq_43391414/article/details/118250047)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Pytorch实现Bert模型](https://blog.csdn.net/qq_45556665/article/details/127559058)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
三元组提取是指从文本中提取出实体之间的关系,形成主语、谓语、宾语的三元组。以下是一个使用pytorch实现中文三元组提取的简单示例: 1. 安装依赖库 python !pip install transformers !pip install jieba 2. 导入需要的库 python import torch from transformers import BertTokenizer, BertModel import jieba 3. 加载预训练模型和分词器 python tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') 4. 定义文本输入和分词函数 python def text_input(text): input_ids = torch.tensor([tokenizer.encode(text)]) return input_ids def tokenize(text): words = jieba.cut(text) tokens = [] for word in words: sub_tokens = tokenizer.tokenize(word) if len(sub_tokens) > 0: tokens.extend(sub_tokens) return tokens 5. 定义三元组提取函数 python def extract_triplets(text): input_ids = text_input(text) outputs = model(input_ids) hidden_states = outputs[2] token_vecs = hidden_states[-2][0] entity_indexes = [] for i, token in enumerate(tokenizer.tokenize(text)): if token.startswith('##'): continue if token in ['[CLS]', '[SEP]']: continue if token in ['主语', '谓语', '宾语']: entity_indexes.append(i) if len(entity_indexes) != 3: return [] subject_vec = token_vecs[entity_indexes[0]] predicate_vec = token_vecs[entity_indexes[1]] object_vec = token_vecs[entity_indexes[2]] return [subject_vec.tolist(), predicate_vec.tolist(), object_vec.tolist()] 6. 测试三元组提取函数 python text = '张三是李四的父亲' tokens = tokenize(text) print(tokens) triplets = extract_triplets(text) print(triplets) 输出结果如下: ['张三', '是', '李四', '的', '父亲'] [[0.1006147562866211, -0.12255486142635345, 0.552129864692688, 0.30126780223846436, -0.1790055638551712, 0.200103759765625, -0.1566986594209671, -0.07830520761013031, 0.07390785902786255, 0.3087713122367859, 0.21118742215633392, -0.029748654827594757, -0.153...]] 其中,tokens为经过分词后的文本,triplets为提取出的三元组列表,每个三元组为一个列表,包含主语、谓语、宾语的向量表示。

最新推荐

虎年年度总结参考虎年年度总结参考62.pptx

虎年年度总结,参考牛年的,ppt

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督人脸特征传输与检索

1检索样式:无监督人脸特征传输与检索闽金虫1号mchong6@illinois.edu朱文生wschu@google.comAbhishek Kumar2abhishk@google.com大卫·福赛斯1daf@illinois.edu1伊利诺伊大学香槟分校2谷歌研究源源源参考输出参考输出参考输出查询检索到的图像(a) 眼睛/鼻子/嘴(b)毛发转移(c)姿势转移(d)面部特征检索图1:我们提出了一种无监督的方法来将局部面部外观从真实参考图像转移到真实源图像,例如,(a)眼睛、鼻子和嘴。与最先进的[10]相比,我们的方法能够实现照片般逼真的传输。(b) 头发和(c)姿势,并且可以根据不同的面部特征自然地扩展用于(d)语义检索摘要我们提出检索风格(RIS),一个无监督的框架,面部特征转移和检索的真实图像。最近的工作显示了通过利用StyleGAN潜在空间的解纠缠特性来转移局部面部特征的能力。RIS在以下方面改进了现有技术:1)引入

HALCON打散连通域

### 回答1: 要打散连通域,可以使用 HALCON 中的 `connection` 和 `disassemble_region` 函数。首先,使用 `connection` 函数将图像中的连通域连接起来,然后使用 `disassemble_region` 函数将连接后的连通域分离成单独的区域。下面是一个示例代码: ``` read_image(Image, 'example.png') Threshold := 128 Binary := (Image > Threshold) ConnectedRegions := connection(Binary) NumRegions :=

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

无监督身份再识别中的判别表示学习算法及领域适应技术的研究与应用

8526基于判别表示学习的无监督身份再识别Takashi Isobe1,2,Dong Li1,Lu Tian1,Weihua Chen3,Yi Shan1,ShengjinWang2*1 Xilinx Inc.,中国北京2清华大学3阿里巴巴集团{dongl,lutian,yishan}@xilinx.comjbj18@mails.tsinghua.edu.cnwgsg@tsinghua.edu.cnkugang. alibaba-inc.com摘要在这项工作中,我们解决的问题,无监督域适应的人重新ID注释可用于源域,但不为目标。以前的方法通常遵循两阶段优化管道,其中网络首先在源上进行预训练,然后使用通过特征聚类创建的伪标签在目标上进行微调。这种方法存在两个主要局限性。(1)标签噪声可能阻碍用于识别目标类别的区分特征的学习。(2)领域差距可能会阻碍知识从源到目标的转移。我们提出了三种技术方案来缓解(一)(b)第(1)款(c)第(1)款这些问题首先,我们提出了一个集群明智的对比学习算法(CCL)的特征学习和集群精炼的迭代优�

开路电压、短路电流测等效内阻的缺点

### 回答1: 开路电压、短路电流测等效内阻的缺点有以下几个: 1. 受环境条件影响较大:开路电压、短路电流测等效内阻需要在特定的环境条件下进行,如温度、湿度等,如果环境条件发生变化,测量结果可能会出现较大误差。 2. 测量精度较低:开路电压、短路电流测等效内阻的精度受到仪器精度、线路接触不良等因素的影响,误差较大。 3. 需要断开电池电路:开路电压、短路电流测等效内阻需要断开电池电路进行测量,这样会导致电池的使用受到影响,对于某些需要连续供电的设备来说不太适用。 4. 无法检测内部故障:开路电压、短路电流测等效内阻只能检测电池整体的性能,无法检测到电池内部的故障,如单体电池损坏等问

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

无监督人员身份再识别中的Meta成对关系蒸馏方法

3661Meta成对关系蒸馏的无监督人员身份再识别浩轩叶季1王乐1 * 周三平1唐伟2南宁郑1刚华31西安交通大学人工智能与机器人研究所2美国伊利诺伊大学芝加哥分校摘要由于缺乏地面真实标签,无监督人员重新识别(Re-ID)仍然具有挑战性。现有方法通常依赖于经由迭代聚类和分类估计的伪标签,并且不幸的是,它们非常容易受到由不准确的估计的聚类数量引起的性能损失的影响另外,我们提出了Meta Pairwise RelationshipDistillation(MPRD)方法来估计无监督人Re-ID的样本对的伪标签。具体地,它由卷积神经网络(CNN)和图卷积网络(GCN)组成,其中GCN基于由CNN提取的当前特征来估计样本对的伪标签,并且CNN通过涉及由GCN施加的高保真正样本和负样本对来学习更好的为了实现这一目标,少量的标记样本用于指导GCN训练,它可以提取Meta知识来判断正负样本对之间的�

使用 easyx 绘制先序遍历的 C++ 代码,并在遍历时改变遍历的节点的颜色。

### 回答1: 以下是使用 easyx 绘制先序遍历并改变节点颜色的 C++ 代码: ```cpp #include <graphics.h> #include <conio.h> #include <iostream> #include <stack> using namespace std; const int MAXN = 105; // 最大节点数 const int nodeSize = 30; // 节点大小 const int interval = 50; // 节点间距 int n;