采用noisereduce模块中的band_limited_noise方法生成噪音,设置噪音的最大频率为8000Hz,最小频率为2000Hz,将record.wav文件的数据和噪音数据进行叠加生成带噪的原始信号,采用noisereduce中的降噪方法去除叠加信号的噪音,将原始信号、叠加信号、降噪后的信号的三个波形图在一个figure中绘制,采用截图工具保存完整图片。
时间: 2024-02-25 09:52:55 浏览: 116
好的,这是一个音频处理的问题。下面是一些Python代码实现这个问题:
```python
import numpy as np
import soundfile as sf
from noisereduce import reduce_noise
# 读取原始录音文件
data, sr = sf.read('record.wav')
# 生成噪音
noise = np.random.normal(0, 0.1, len(data))
noise *= band_limited_noise(2000, 8000, sr)
# 叠加噪音
noisy_data = data + noise
# 降噪处理
reduced_noise = reduce_noise(audio_clip=data, noise_clip=noise, verbose=False)
# 绘制图像
import matplotlib.pyplot as plt
fig, axs = plt.subplots(3, 1, figsize=(15, 10), sharex=True, sharey=True)
axs[0].plot(data)
axs[0].set_title('Original Signal')
axs[1].plot(noisy_data)
axs[1].set_title('Noisy Signal')
axs[2].plot(reduced_noise)
axs[2].set_title('Denoised Signal')
plt.tight_layout()
plt.savefig('waveform.png')
```
其中,`band_limited_noise` 方法用于生成带限制的噪声:
```python
def band_limited_noise(min_freq, max_freq, samples, samplerate=1):
freqs = np.abs(np.fft.fftfreq(samples, 1 / samplerate))
f = np.zeros(samples)
f[np.logical_and(freqs >= min_freq, freqs <= max_freq)] = 1
return np.real(np.fft.ifft(np.fft.fftshift(f * np.exp(1j * np.random.uniform(0, 2*np.pi, samples)))))
```
执行上述代码后,将会生成一个名为 `waveform.png` 的图片,其中包含了原始信号、叠加信号和降噪后的信号的波形图。
阅读全文
相关推荐
















