import pandas as pd # 读取 Excel 文件 df = pd.read_excel('stockdata.xlsx') # 统计频数 freq = df['股票代码'].value_counts() # 计算频率 freq_rate = freq / len(df) # 合并频数和频率 result = pd.concat([freq, freq_rate], axis=1) result.columns = ['频数', '频率'] # 将结果写入文件 result.to_csv('code.csv')
时间: 2024-04-02 17:31:51 浏览: 70
系统级中断源-详解pandas库pd.read_excel操作读取excel文件参数整理与实例
这段代码将读取名为 "stockdata.xlsx" 的 Excel 文件中的股票代码列,统计每个股票代码出现的频数和频率,并将结果分别保存到名为 "freq" 和 "freq_rate" 的变量中。然后,使用 pd.concat() 函数将频数和频率列合并为一个 DataFrame,并将列名改为 "频数" 和 "频率"。最后,使用 to_csv() 函数将结果保存到名为 "code.csv" 的 CSV 文件中。
需要注意的是,读取 Excel 文件需要安装相应的库,如 openpyxl 或 xlrd 等。如果您使用的是较新版本的 pandas,可以直接使用 pd.read_excel() 函数读取 Excel 文件,而不需要安装额外的库。另外,您可以根据实际情况修改列名、文件名等参数。
阅读全文