pytorch建立神经网络详细讲解

时间: 2023-06-28 18:11:18 浏览: 52
PyTorch是一个基于Python的科学计算包,它的主要目标是提供一个灵活的深度学习开发平台,可以更快地进行实验和研究,同时具有强大的GPU加速能力。在PyTorch中,我们可以用简单而直观的方式来构建神经网络。 下面是一个简单的例子,展示了如何使用PyTorch来构建一个简单的神经网络: ``` python import torch import torch.nn as nn import torch.optim as optim # 定义网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = x.view(-1, 784) x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) return x # 定义损失函数和优化器 net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练网络 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 1000 == 999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 1000)) running_loss = 0.0 print('Finished Training') ``` 这个例子中的神经网络包含两个全连接层,输入大小为 784,输出大小为 10。通过调用 `nn.Linear` 函数来创建这些层。 然后在 `forward` 方法中定义了网络的前向传播过程,它接受一个输入张量 `x`,将其展平成一维向量,并通过全连接层进行计算,最后返回输出张量。 在训练过程中,我们使用交叉熵损失函数和随机梯度下降优化器来更新网络参数。通过在训练集上迭代多次来训练网络。 在每个 epoch 中,我们遍历训练集中的所有数据。对于每个数据点,我们首先将梯度清零,然后将输入张量传递给网络,并计算输出张量。接着计算损失函数,并通过调用 `backward` 方法来计算梯度。最后通过调用优化器的 `step` 方法来更新参数。

相关推荐

最新推荐

recommend-type

使用 pytorch 创建神经网络拟合sin函数的实现

主要介绍了使用 pytorch 创建神经网络拟合sin函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

关于pytorch中全连接神经网络搭建两种模式详解

今天小编就为大家分享一篇关于pytorch中全连接神经网络搭建两种模式详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch下使用LSTM神经网络写诗实例

今天小编就为大家分享一篇pytorch下使用LSTM神经网络写诗实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

本篇文章主要介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

Python实现的径向基(RBF)神经网络示例

主要介绍了Python实现的径向基(RBF)神经网络,结合完整实例形式分析了Python径向基(RBF)神经网络定义与实现技巧,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。