TensorFlow 2实现Adam优化器的批次优化代码
时间: 2024-05-05 15:22:15 浏览: 97
下面是使用TensorFlow 2实现Adam优化器的批次优化代码的示例:
```python
import tensorflow as tf
# 定义模型和损失函数
model = tf.keras.Sequential([...])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()
# 定义Adam优化器,设置初始学习率和其他参数
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07)
# 定义训练过程
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images, training=True)
loss = loss_fn(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
# 加载数据集并进行训练
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
train_images = train_images / 255.0
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)
test_images = test_images / 255.0
BATCH_SIZE = 32
train_ds = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).shuffle(10000).batch(BATCH_SIZE)
test_ds = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(BATCH_SIZE)
EPOCHS = 10
for epoch in range(EPOCHS):
for images, labels in train_ds:
train_step(images, labels)
```
在上述代码中,我们首先定义了一个模型和损失函数。接着,我们使用`tf.keras.optimizers.Adam()`函数定义了一个Adam优化器,并设置了初始学习率和其他参数。然后,我们定义了一个训练过程,其中使用`tf.GradientTape()`记录了梯度,并使用`optimizer.apply_gradients()`方法对模型参数进行更新。最后,我们加载了MNIST数据集,并使用`tf.data.Dataset`进行批次处理,进行了训练。
阅读全文