把一个点云numpy,按照x轴相同值,拆分成多个numpy

时间: 2023-11-10 09:01:36 浏览: 159
可以使用numpy中的split函数来实现。 假设点云numpy为points,其中每个点的坐标为(x,y,z),可以按照x轴相同的值将其拆分成多个numpy数组。 首先,需要对points按照x轴升序排序: ```python sorted_points = points[np.argsort(points[:, 0])] ``` 然后,可以使用split函数按照x轴相同的值进行拆分: ```python x_values = sorted_points[:, 0] split_indices = np.where(np.diff(x_values) > 0)[0] + 1 split_points = np.split(sorted_points, split_indices) ``` 这里,np.diff(x_values) > 0可以得到一个布尔数组,表示相邻两个元素是否不同,然后np.where可以得到这些不同的位置索引,最后加1是因为split函数需要的是切割点的下标。 最终,split_points就是按照x轴相同值拆分后的多个numpy数组。可以使用for循环遍历每个数组进行处理。
相关问题

def plot_rate( rate_his, rolling_intv = 50, ylabel='标准化计算速率',ax=None): import matplotlib.pyplot as plt import pandas as pd import matplotlib as mpl rate_array = np.asarray(rate_his) # 将一个 Python 列表 rate_his 转换为 NumPy 数组 rate_array df = pd.DataFrame(rate_his) # 创建了一个名为df的Pandas DataFrame对象,将rata_his数据进行索引拆分过滤排序 if ax is None: fig, ax = plt.subplots(figsize=(15, 8)) mpl.style.use('seaborn') #设置matplotlib 库的绘图风格为 seaborn 风格 fig, ax = plt.subplots(figsize=(15,8))# 使用 Matplotlib 库创建一个带有指定大小的子图对象,宽为15,高为8 plt.plot(np.arange(len(rate_array))+1, np.hstack(df.rolling(rolling_intv, min_periods=1).mean().values), 'b') #使用plt.plot函数将生成的x轴和y轴坐标绘制成折线图,并且'b' 表示蓝色的线条。 plt.fill_between(np.arange(len(rate_array))+1, np.hstack(df.rolling(rolling_intv, min_periods=1).min()[0].values), np.hstack(df.rolling(rolling_intv, min_periods=1).max()[0].values), color = 'b', alpha = 0.2) #将这两个曲线之间的区域填充成颜色为蓝色、透明度为0.2的矩形 plt.ylabel(ylabel)# 设置纵轴标签 plt.xlabel('Time Frames')#设置横轴标签 plt.show(), plot_rate(Q.sum(axis=1)/N, 100, 'Average Data Queue') plot_rate(energy.sum(axis=1)/N, 100, 'Average Energy Consumption'),将多个函数绘制于横坐标相同的同一张图

可以通过将多个函数的数据合并成一个 NumPy 数组,然后在同一个子图对象上使用 plt.plot() 函数来绘制多条线路。下面是一个示例代码,其中包括两个函数 plot_rate() 的调用,用于在同一张图上绘制两条线路: ``` python import numpy as np import matplotlib.pyplot as plt def plot_rate(rate_his, rolling_intv=50, ylabel='标准化计算速率', ax=None): import pandas as pd import matplotlib as mpl rate_array = np.asarray(rate_his) df = pd.DataFrame(rate_his) if ax is None: fig, ax = plt.subplots(figsize=(15, 8)) mpl.style.use('seaborn') ax.plot(np.arange(len(rate_array))+1, np.hstack(df.rolling(rolling_intv, min_periods=1).mean().values), 'b') ax.fill_between(np.arange(len(rate_array))+1, np.hstack(df.rolling(rolling_intv, min_periods=1).min()[0].values), np.hstack(df.rolling(rolling_intv, min_periods=1).max()[0].values), color='b', alpha=0.2) ax.set_ylabel(ylabel) ax.set_xlabel('Time Frames') # Generate some sample data N = 1000 Q = np.random.normal(0.0, 1.0, (N, 10)) energy = np.random.normal(10.0, 1.0, (N, 10)) # Create a figure with two subplots fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(15, 10)) # Plot the data queue rate on the first subplot plot_rate(Q.sum(axis=1)/N, 100, 'Average Data Queue', ax=ax1) # Plot the energy consumption rate on the second subplot plot_rate(energy.sum(axis=1)/N, 100, 'Average Energy Consumption', ax=ax2) # Show the plot plt.show() ``` 这段代码将生成两个包含随机数据的 NumPy 数组 Q 和 energy。我们使用这些数组中的数据来调用 plot_rate() 函数,将数据队列速率和能量消耗速率绘制在同一张图上的两个子图中。在这个示例中,我们使用了 plt.subplots() 函数来创建一个包含两个子图的图形,然后在每个子图上调用 plot_rate() 函数来绘制数据。

import pandas as pd import os from scipy import integrate, signal import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文 matplotlib.rcParams['axes.unicode_minus'] = False # 用来正常显示正负号 #y = pd.read_excel(r'C:\Users\ppddcsm\Desktop\第一批数据拆分\第一批1号1振\A1-1-600.xlsx', usecols=[1],index_col=False, header=None ,skiprows=[0]) folder_path = r'C:\Users\ppddcsm\Desktop\第二批数据拆分\第二批1号1振' file_names = os.listdir(folder_path) for file_name in file_names: file_path = os.path.join(folder_path, file_name) y = pd.read_excel(file_path) N = len(y) fs = 1280 dt = 1/fs #t_axis = [i * dt for i in range(len(y))] # 时间轴 t_axis = [i * dt for i in range(len(y))] y1 = y.swapaxes(0, 1) # 矩阵转置 data = y1.fillna(-1).values #获取数据,将缺失值标记设置为-1,并转换为NumPy数组对象 t = data.flatten() # 展平数组 a = np.array(t) # 梯形法 cumtrapz累计计算积分,cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None)。y: 需要被积分的数值序列;x: y中元素的间距,积分变量,若为空,则y元素的间距默认为dx; # 续:dx: 如果x为空,y中元素的间距由dx给出;axis: 确定积分轴;initial: 如果提供,则用该值作为返回值的第一个数值。 #y_int = integrate.cumtrapz(np.array(a), x=None, dx=0.00078125, initial=0)*1000 # m到mm转换要乘1000 #y_int = np.multiply(integrate.cumtrapz(np.array(a), x=None, dx=0.00078125, initial=0), 1000) Y = integrate.cumtrapz(np.array(a), x=None, dx=0.00078125, initial=0) y_int = np.multiply(Y, 1000)

这段代码的目的是对给定的文件夹中的Excel文件进行处理,计算其累积梯形积分,并将结果保存在y_int中。在这段代码中,首先使用pandas库读取Excel文件,然后将数据转换为NumPy数组。接下来,使用scipy库中的cumtrapz函数对数组进行累积梯形积分操作,并将结果乘以1000,得到y_int。 根据你提供的错误信息,看起来是在cumtrapz函数的调用中出现了类型错误。这可能是因为a数组中包含了非数值类型的数据,导致无法进行数值积分。你可以检查一下数据是否正确加载,并且数据的类型是否正确。如果数据包含非数值类型的元素,你可能需要进行一些数据清洗或转换操作,以确保cumtrapz函数可以正常工作。 另外,你在代码中注释掉了一行y_int的计算方式,可能是为了测试不同的计算方法。你可以尝试取消注释并使用这种计算方式,看看是否能够避免类型错误。如果仍然存在问题,请提供更多的错误信息或具体描述问题的情况,以便我能够帮助你解决问题。
阅读全文

相关推荐

import pandas as pd import os from scipy import integrate, signal import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文 matplotlib.rcParams['axes.unicode_minus'] = False # 用来正常显示正负号 #y = pd.read_excel(r'C:\Users\ppddcsm\Desktop\第一批数据拆分\第一批1号1振\A1-1-600.xlsx', usecols=[1],index_col=False, header=None ,skiprows=[0]) folder_path = r'C:\Users\ppddcsm\Desktop\第二批数据拆分\第二批1号1振' file_names = os.listdir(folder_path) for file_name in file_names: file_path = os.path.join(folder_path, file_name) y = pd.read_excel(file_path) N = len(y) fs = 1280 dt = 1/fs t_axis = [i * dt for i in range(len(y))] # 时间轴 y1 = y.swapaxes(0, 1) # 矩阵转置 data = y1.fillna(-1).values #获取数据,将缺失值标记设置为-1,并转换为NumPy数组对象 t = data.flatten() # 展平数组 a = np.array(t) # 梯形法 cumtrapz累计计算积分,cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None)。y: 需要被积分的数值序列;x: y中元素的间距,积分变量,若为空,则y元素的间距默认为dx; # 续:dx: 如果x为空,y中元素的间距由dx给出;axis: 确定积分轴;initial: 如果提供,则用该值作为返回值的第一个数值。 y_int = integrate.cumtrapz(np.array(a), x=None, dx=0.00078125, initial=0)*1000 # m到mm转换要乘1000 result = signal.detrend(y_int) # 去趋势 plt.figure(figsize=(16, 6)) plt.subplot(121) plt.plot(t_axis, y, label="原始加速度信号") plt.ylabel("m/s^2") plt.legend(loc="upper right") plt.subplot(122) plt.plot(t_axis, y_int, label="积分后的速度信号") plt.ylabel("mm/s") plt.legend(loc="upper right") plt.figure(figsize=(8, 6)) plt.plot(t_axis, result, label="去趋势后的速度信号") plt.ylabel("mm/s") plt.legend(loc="upper right")

最新推荐

recommend-type

Python实现读取txt文件并画三维图简单代码示例

在循环中,通过`split()`函数将每一行数据按照指定分隔符(默认为空格)拆分成多个部分。在这个例子中,每行包含三个数值,分别对应三维坐标中的x、y、z轴。将这些值分别存储到`x`、`y`、`z`列表中。 ```python f...
recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

j link 修复问题套件

j link 修复问题套件
recommend-type

C#实现modbusRTU(实现了01 3 05 06 16等5个功能码)

资源包括 modbuspoll 虚拟串口软件vspd modsim32和modscan32 以及C#版的modbus程序 打开modsim32连接串口2 打开程序连接串口3 即可和Mdosim32进行读写通信。 本代码为C# winform程序,实现了01 03 05 06 16总共五个功能码的功能。 备注: 01功能码:读线圈开关。 03功能码: 读寄存器值。 05功能码:写线圈开关。 06功能码:写单个寄存器值。 16功能码:写多个寄存器值。
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。