请用matlab代码利用谱减法消除一段带有噪声的信号
时间: 2023-06-20 11:10:37 浏览: 104
假设你有一个带噪声的音频信号,可以按照以下步骤使用谱减法进行降噪。
1. 读取音频信号
```matlab
[x, fs] = audioread('noisy_audio.wav');
```
2. 计算短时傅里叶变换(STFT)并获取幅度谱和相位谱
```matlab
win_length = round(fs * 0.02); % 窗口长度为20ms
hop_length = round(fs * 0.01); % 窗口重叠为10ms
n_fft = 2^nextpow2(win_length); % FFT点数
[S, f, t] = spectrogram(x, hamming(win_length), hop_length, n_fft, fs); % STFT
A = abs(S); % 幅度谱
P = angle(S); % 相位谱
```
3. 计算噪声的幅度谱
```matlab
n_fft2 = 2^nextpow2(win_length / 2 + 1); % 计算FFT点数(取一半的长度加1)
N = zeros(n_fft2, 1); % 初始化噪声幅度谱
for i = 1:size(A, 2)
N = N + A(:, i).^2; % 累加所有帧的幅度谱的平方
end
N = N / size(A, 2); % 求平均值
```
4. 估计信号的幅度谱
```matlab
alpha = 2; % 设定谱减系数
A_est = max(A - alpha * sqrt(N), 0); % 谱减
```
5. 合成信号
```matlab
S_est = A_est .* exp(1j * P); % 合成幅度谱和相位谱
x_est = istft(S_est, hamming(win_length), hop_length, n_fft, fs); % 合成信号
```
其中,`istft` 是用于反向转换的函数,可以使用以下代码定义:
```matlab
function x = istft(S, win, hop, n_fft, fs)
% ISTFT Inverse short-time Fourier transform
% x = ISTFT(S, WIN, HOP, N_FFT, FS) computes the inverse short-time
% Fourier transform (ISTFT) of the STFT coefficients S using a window
% function WIN with hop size HOP and FFT length N_FFT. The sampling rate
% is FS. The output signal x has the same length as the original signal.
%
% Inputs:
% S: N_FFT/2+1 x T matrix of STFT coefficients
% WIN: N x 1 window function (N <= N_FFT)
% HOP: hop size in samples
% N_FFT: FFT length
% FS: sampling rate in Hz
%
% Outputs:
% x: L x 1 vector of reconstructed signal
% Get the number of frequency bins and frames
[n_bins, n_frames] = size(S);
% Check the window size
win_len = length(win);
if win_len > n_fft
error('Window size exceeds FFT length.');
end
% Initialize the reconstructed signal
L = (n_frames - 1) * hop + win_len;
x = zeros(L, 1);
% Compute the synthesis window
win_syn = win / sum(win);
% Synthesize each frame
for i = 1:n_frames
% Get the current frame
s = S(:, i);
% Compute the magnitude spectrum
a = [s; conj(s(end-1:-1:2))]; % reflect upper half of the spectrum
x_mag = real(ifft(a));
x_mag = x_mag(1:win_len);
% Overlap-add the reconstructed frame
idx = (i-1)*hop + (1:win_len);
x(idx) = x(idx) + x_mag .* win_syn;
end
% Normalize the reconstructed signal
x = x / max(abs(x));
end
```
阅读全文