搭建一个ReXNet网络,写出完整代码
时间:2023-03-10 14:24:28 浏览:30
首先,我们需要导入必要的库:import torch import torchvision from torchvision import transforms from torch.utils.data import DataLoader from torchvision.models import ReXNet from torch import nn, optim 接下来,我们需要定义数据预处理:transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 接着,我们可以加载数据:dataset = torchvision.datasets.ImageFolder(root='/path/to/data', transform=transform) dataloader = DataLoader(dataset, batch_size=32, shuffle=True) 接下来,我们可以定义模型:model = ReXNet(num_classes=100) 接着,我们可以定义损失函数和优化器:criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) 最后,我们可以开始训练:for epoch in range(num_epochs): for data in dataloader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()