pytorch 实现 LSGAN
时间: 2023-07-11 16:54:35 浏览: 156
LSGAN,全称为 Least Squares Generative Adversarial Networks,是一种生成对抗网络(GAN)的变体,它使用最小二乘损失函数来代替传统的交叉熵损失函数,从而提高了生成器的稳定性和输出质量。
下面是使用 PyTorch 实现 LSGAN 的基本步骤:
1. 导入所需的库
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
```
2. 定义生成器和判别器网络
```python
class Generator(nn.Module):
def __init__(self, latent_dim=100, img_channels=1, img_size=28):
super(Generator, self).__init__()
self.img_size = img_size
self.model = nn.Sequential(
nn.Linear(latent_dim, 128),
nn.ReLU(inplace=True),
nn.Linear(128, img_size * img_size * img_channels),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), 1, self.img_size, self.img_size)
return img
class Discriminator(nn.Module):
def __init__(self, img_channels=1, img_size=28):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(img_size * img_size * img_channels, 128),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(128, 1)
)
def forward(self, img):
img = img.view(img.size(0), -1)
validity = self.model(img)
return validity
```
3. 定义损失函数和优化器
```python
adversarial_loss = nn.MSELoss()
generator = Generator()
discriminator = Discriminator()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
```
4. 训练模型
```python
for epoch in range(num_epochs):
for i, (imgs, _) in enumerate(dataloader):
# 训练判别器
optimizer_D.zero_grad()
real_imgs = imgs.cuda()
z = torch.randn(batch_size, latent_dim).cuda()
fake_imgs = generator(z)
real_validity = discriminator(real_imgs)
fake_validity = discriminator(fake_imgs.detach())
d_loss_real = adversarial_loss(real_validity, torch.ones(batch_size, 1).cuda())
d_loss_fake = adversarial_loss(fake_validity, torch.zeros(batch_size, 1).cuda())
d_loss = 0.5 * (d_loss_real + d_loss_fake)
d_loss.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
z = torch.randn(batch_size, latent_dim).cuda()
fake_imgs = generator(z)
fake_validity = discriminator(fake_imgs)
g_loss = adversarial_loss(fake_validity, torch.ones(batch_size, 1).cuda())
g_loss.backward()
optimizer_G.step()
```
5. 生成样本
```python
# 生成样本
z = torch.randn(num_samples, latent_dim).cuda()
samples = generator(z)
```
这就是使用 PyTorch 实现 LSGAN 的基本步骤。你可以根据自己的需求进行调整和优化。
阅读全文