已知imu与激光雷达的相对位置关系、已知imu数据,如何通过imu数据推算激光雷达的四元数,写出ros算法实现程序
时间: 2024-04-30 19:19:36 浏览: 140
假设我们已知imu和激光雷达的相对位置关系为$T_{imu-lidar}$,而imu数据包括角速度$\omega$和线加速度$a$。我们可以通过以下步骤来推算激光雷达的四元数:
1. 将imu的角速度$\omega$转换为旋转矩阵$R_{imu}$。这可以通过将$\omega$积分得到:
$$R_{imu}(t) = R_{imu}(t-1) \cdot \exp([\omega(t) - b_{\omega}] \cdot \Delta t)$$
其中$\Delta t$是时间间隔,$b_{\omega}$是角速度的偏移量。
2. 将imu的线加速度$a$转换为重力加速度在imu坐标系下的向量$g_{imu}(t)$。这可以通过以下公式计算:
$$g_{imu}(t) = R_{imu}(t) \cdot g_{world} + a(t)$$
其中$g_{world}$是重力加速度在世界坐标系下的向量。
3. 将激光雷达在imu坐标系下的位置$p_{lidar}(t)$计算为:
$$p_{lidar}(t) = T_{imu-lidar} \cdot p_{imu}(t)$$
其中$p_{imu}(t)$是imu在世界坐标系下的位置。
4. 计算激光雷达在世界坐标系下的向量$v_{lidar}(t)$。这可以通过以下公式计算:
$$v_{lidar}(t) = R_{imu}(t) \cdot v_{imu}(t)$$
其中$v_{imu}(t)$是imu在世界坐标系下的速度。
5. 根据激光雷达在世界坐标系下的向量$v_{lidar}(t)$和位置$p_{lidar}(t)$计算激光雷达的四元数$q_{lidar}(t)$。这可以通过以下公式计算:
$$q_{lidar}(t) = \begin{bmatrix} \sqrt{(1 + v_{lidar,x}(t) + p_{lidar,x}(t))^2 + (v_{lidar,y}(t) + p_{lidar,y}(t))^2 + (v_{lidar,z}(t) + p_{lidar,z}(t))^2} \\ \frac{v_{lidar,z}(t) + p_{lidar,z}(t)}{\sqrt{(1 + v_{lidar,x}(t) + p_{lidar,x}(t))^2 + (v_{lidar,y}(t) + p_{lidar,y}(t))^2 + (v_{lidar,z}(t) + p_{lidar,z}(t))^2}} \\ \frac{v_{lidar,y}(t) + p_{lidar,y}(t)}{\sqrt{(1 + v_{lidar,x}(t) + p_{lidar,x}(t))^2 + (v_{lidar,y}(t) + p_{lidar,y}(t))^2 + (v_{lidar,z}(t) + p_{lidar,z}(t))^2}} \\ \frac{v_{lidar,x}(t) + p_{lidar,x}(t)}{\sqrt{(1 + v_{lidar,x}(t) + p_{lidar,x}(t))^2 + (v_{lidar,y}(t) + p_{lidar,y}(t))^2 + (v_{lidar,z}(t) + p_{lidar,z}(t))^2}}\end{bmatrix}$$
最后,我们可以使用ROS编写一个节点来实现算法。代码示例如下:
```python
import rospy
from sensor_msgs.msg import Imu
from geometry_msgs.msg import Quaternion, Vector3, PoseStamped
import tf
class LidarQuaternionNode:
def __init__(self):
rospy.init_node('lidar_quaternion_node')
self.lidar_quaternion_pub = rospy.Publisher('/lidar_quaternion', PoseStamped, queue_size=10)
self.imu_sub = rospy.Subscriber('/imu', Imu, self.imu_callback)
self.tf_broadcaster = tf.TransformBroadcaster()
self.T_imu_lidar = None
def imu_callback(self, imu_msg):
# Step 1: Calculate rotation matrix from imu angular velocity
R_imu = self.calc_rotation_matrix(imu_msg.angular_velocity)
# Step 2: Calculate gravity vector in imu frame
g_world = Vector3(0, 0, -9.81)
g_imu = R_imu * g_world + imu_msg.linear_acceleration
# Step 3: Calculate lidar position in imu frame
lidar_pos_imu = self.T_imu_lidar * Vector3(0, 0, 0)
# Step 4: Calculate lidar velocity in world frame
v_imu_world = R_imu * imu_msg.linear_acceleration + Vector3(0, 0, 9.81)
lidar_vel_world = R_imu * v_imu_world
# Step 5: Calculate lidar quaternion from velocity and position
lidar_quat = self.calc_lidar_quaternion(lidar_pos_imu, lidar_vel_world)
# Publish lidar quaternion
lidar_pose = PoseStamped()
lidar_pose.header.stamp = rospy.Time.now()
lidar_pose.pose.orientation = lidar_quat
self.lidar_quaternion_pub.publish(lidar_pose)
# Broadcast lidar transform
self.tf_broadcaster.sendTransform((lidar_pos_imu.x, lidar_pos_imu.y, lidar_pos_imu.z),
(lidar_quat.x, lidar_quat.y, lidar_quat.z, lidar_quat.w),
rospy.Time.now(),
'lidar',
'imu')
def calc_rotation_matrix(self, angular_velocity):
# Calculate rotation matrix from imu angular velocity
dt = 1.0 / 50
R_imu = tf.transformations.identity_matrix()
for i in range(3):
R_imu = tf.transformations.concatenate_matrices(R_imu, tf.transformations.rotation_matrix(angular_velocity[i] * dt, (1, 0, 0)))
return R_imu
def calc_lidar_quaternion(self, lidar_pos_imu, lidar_vel_world):
# Calculate lidar quaternion from velocity and position
x = lidar_pos_imu.x + lidar_vel_world.x + 1
y = lidar_pos_imu.y + lidar_vel_world.y
z = lidar_pos_imu.z + lidar_vel_world.z
norm = (x ** 2 + y ** 2 + z ** 2) ** 0.5
w = norm
x /= norm
y /= norm
z /= norm
return Quaternion(x, y, z, w)
def run(self):
# Wait for T_imu_lidar to be set
while self.T_imu_lidar is None:
rospy.sleep(0.1)
# Spin
rospy.spin()
if __name__ == '__main__':
node = LidarQuaternionNode()
node.T_imu_lidar = tf.transformations.quaternion_matrix([0, 0, 0.1, 1])
node.run()
```
在这个ROS节点中,我们订阅了IMU数据,并发布了激光雷达的四元数和变换。我们还定义了两个辅助函数来计算旋转矩阵和激光雷达的四元数。在这个示例中,我们假设激光雷达的相对位置关系为$[0, 0, 0.1, 1]$,即激光雷达在imu坐标系下的位置为$(0, 0, 0.1)$,四元数为$(0, 0, 0, 1)$。
阅读全文