将下列生成器改造成能够匹配edge-connect中的修补模式的预训练模型键值的结构:class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(3, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 4000, 1), nn.BatchNorm2d(4000), nn.LeakyReLU(0.2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1), nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x
时间: 2023-06-15 17:06:30 浏览: 162
可以将生成器改为以下结构,使其可以匹配edge-connect中的修补模式的预训练模型键值的结构:
```
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, 3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2),
nn.Conv2d(64, 128, 3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2),
nn.Conv2d(128, 256, 3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2),
nn.Conv2d(256, 512, 3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2),
nn.Conv2d(512, 4000, 1),
nn.BatchNorm2d(4000),
nn.LeakyReLU(0.2)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2),
nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2),
nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2),
nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2),
nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1),
nn.Tanh()
)
self.edge_connect_keys = nn.ModuleList([nn.Linear(4000, 4000) for _ in range(4)])
self.edge_connect_values = nn.ModuleList([nn.Linear(4000, 4000) for _ in range(4)])
def forward(self, x, mask=None):
x = self.encoder(x)
if mask is not None:
for i in range(4):
x = self.edge_connect_keys[i](x[mask == i])
x = x[mask == i]
x = self.edge_connect_values[i](x)
x = x.view(x.size(0), -1, 1, 1)
x = self.decoder(x)
return x
```
其中,增加了 `edge_connect_keys` 和 `edge_connect_values` 两个模块列表,用于存储4个方向的修补模式的预训练模型键值。在 `forward` 方法中,如果有 mask,就根据 mask 的值将 x 分别传入 edge_connect_keys 和 edge_connect_values 中进行处理,并将结果合并。最后再将结果传入 decoder 中进行解码。
阅读全文