遗传算法选址问题matlab代码
时间: 2023-10-11 12:05:17 浏览: 161
由于遗传算法选址问题的具体实现涉及到具体的问题和数据,因此无法提供通用的matlab代码。以下是一个简单的遗传算法模板,供参考:
```
% 遗传算法模板
clear all;
close all;
clc;
% 参数设置
pop_size = 50; % 种群大小
gene_length = 10; % 染色体长度
max_generation = 100; % 最大迭代次数
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
elite_count = 2; % 精英个体数量
% 初始化种群
pop = randi([0,1],pop_size,gene_length);
% 迭代
for generation = 1:max_generation
% 计算适应度
fitness = calculate_fitness(pop);
% 选择
selected_pop = selection(pop,fitness);
% 交叉
crossed_pop = crossover(selected_pop,pc);
% 变异
mutated_pop = mutation(crossed_pop,pm);
% 精英策略
elite_pop = elitism(pop,fitness,elite_count);
% 合并种群
pop = [elite_pop;mutated_pop];
end
% 计算最优解
best_fitness = 0;
best_individual = [];
for i = 1:size(pop,1)
f = calculate_fitness(pop(i,:));
if f > best_fitness
best_fitness = f;
best_individual = pop(i,:);
end
end
% 输出结果
disp(['最优解:',num2str(best_individual)]);
disp(['最优适应度:',num2str(best_fitness)]);
% 适应度函数(此处为示例函数)
function f = calculate_fitness(individual)
f = sum(individual);
end
% 选择函数
function selected_pop = selection(pop,fitness)
% 轮盘赌选择
p = fitness/sum(fitness);
cum_p = cumsum(p);
selected_pop = zeros(size(pop));
for i = 1:size(pop,1)
r = rand();
for j = 1:size(pop,1)
if r <= cum_p(j)
selected_pop(i,:) = pop(j,:);
break;
end
end
end
end
% 交叉函数
function crossed_pop = crossover(pop,pc)
crossed_pop = zeros(size(pop));
for i = 1:2:size(pop,1)
if rand() <= pc
% 一点交叉
pos = randi([1,size(pop,2)-1]);
crossed_pop(i,:) = [pop(i,1:pos),pop(i+1,pos+1:end)];
crossed_pop(i+1,:) = [pop(i+1,1:pos),pop(i,pos+1:end)];
else
crossed_pop(i,:) = pop(i,:);
crossed_pop(i+1,:) = pop(i+1,:);
end
end
end
% 变异函数
function mutated_pop = mutation(pop,pm)
mutated_pop = pop;
for i = 1:size(pop,1)
for j = 1:size(pop,2)
if rand() <= pm
% 每个基因以一定概率翻转
mutated_pop(i,j) = ~pop(i,j);
end
end
end
end
% 精英策略函数
function elite_pop = elitism(pop,fitness,count)
[~,idx] = sort(fitness,'descend');
elite_pop = pop(idx(1:count),:);
end
```
需要根据具体问题和数据,修改适应度函数、交叉函数、变异函数等。
阅读全文