构建由40个节点构成的无线传感器网络场景,随机生成,使用K-means的原理并利用Python实现簇状拓扑结构的生成。针对各个节点参数进行随机设置,基于Leach协议的选取原则实现簇头节点的更迭,要求有详细注释,全程使用python实现,实现可视化

时间: 2023-11-22 18:54:18 浏览: 202
好的,这是一个比较复杂的项目,需要一步步实现,下面我会详细介绍。 首先,我们需要生成一个由40个节点组成的无线传感器网络场景。我们可以使用Python中的random库来随机生成节点的位置,如下所示: ```python import random # 生成40个节点 num_nodes = 40 # 随机生成节点的位置 nodes = [] for i in range(num_nodes): x = random.uniform(0, 100) y = random.uniform(0, 100) nodes.append((x, y)) ``` 接下来,我们需要使用K-means算法将这些节点分成几个簇。K-means算法是一种聚类算法,它可以将数据分成K个簇,每个簇都有一个簇中心,簇中心是所有数据点的平均值。K-means算法的基本思想是通过不断计算簇中心,将数据点划分到最近的簇中心所在的簇。我们可以使用scikit-learn库中的KMeans类来实现K-means算法,如下所示: ```python from sklearn.cluster import KMeans # 将节点分成4个簇 num_clusters = 4 # 使用K-means算法进行聚类 kmeans = KMeans(n_clusters=num_clusters) kmeans.fit(nodes) # 获取每个簇的簇中心 cluster_centers = kmeans.cluster_centers_ ``` 现在,我们已经得到了每个簇的簇中心,接下来需要将这些节点连接起来形成簇状拓扑结构。我们可以将每个簇中距离簇中心最近的节点作为簇头节点,其他节点作为普通节点。我们可以使用networkx库来生成网络拓扑图,并使用matplotlib库进行可视化,如下所示: ```python import networkx as nx import matplotlib.pyplot as plt # 创建无向图 G = nx.Graph() # 添加节点 for i in range(num_nodes): G.add_node(i, pos=nodes[i]) # 添加边 for i in range(num_nodes): for j in range(i + 1, num_nodes): dist = ((nodes[i][0] - nodes[j][0]) ** 2 + (nodes[i][1] - nodes[j][1]) ** 2) ** 0.5 if dist <= 10: G.add_edge(i, j) # 设置节点颜色 colors = [] for i in range(num_nodes): for j in range(num_clusters): if i in kmeans.labels_ and kmeans.labels_[i] == j: if i == kmeans.predict([cluster_centers[j]])[0]: colors.append('red') # 簇头节点为红色 else: colors.append('blue') # 普通节点为蓝色 break # 绘制网络拓扑图 pos = nx.get_node_attributes(G, 'pos') nx.draw(G, pos, node_color=colors, with_labels=True) plt.show() ``` 现在,我们已经生成了簇状拓扑结构,并且将簇头节点和普通节点区分开来了。接下来,我们需要实现基于Leach协议的选取原则实现簇头节点的更迭。Leach协议是一种经典的无线传感器网络协议,它采用了分簇的方式来延长网络寿命。在Leach协议中,每个节点都有一定的概率成为簇头节点,簇头节点负责收集和处理其他普通节点的数据,并将数据传输到基站。 我们可以模拟Leach协议的过程,每个节点都有一定的概率成为簇头节点,根据节点的能量等参数来计算概率。簇头节点和普通节点的能量消耗不同,簇头节点的能量消耗更大,因此需要定期更换簇头节点,以平均能量消耗。我们可以使用以下代码实现: ```python # 节点参数设置 num_nodes = 40 node_energy = [random.uniform(1, 10) for i in range(num_nodes)] # 节点能量 node_threshold = [0.1 for i in range(num_nodes)] # 阈值 cluster_head = [False for i in range(num_nodes)] # 是否是簇头节点 next_round_cluster_head = [False for i in range(num_nodes)] # 下一轮是否是簇头节点 # 模拟Leach协议过程 num_rounds = 100 for round in range(num_rounds): # 计算每个节点成为簇头节点的概率 for i in range(num_nodes): if cluster_head[i]: # 如果已经是簇头节点,不需要再次选取 next_round_cluster_head[i] = False else: # 计算概率 if random.uniform(0, 1) < node_energy[i] / (node_threshold[i] * num_nodes): next_round_cluster_head[i] = True else: next_round_cluster_head[i] = False # 更迭簇头节点 for i in range(num_nodes): # 如果是簇头节点 if cluster_head[i]: # 如果能量低于阈值,不再担任簇头节点 if node_energy[i] < node_threshold[i]: cluster_head[i] = False else: # 继续担当簇头节点 next_round_cluster_head[i] = True # 如果不是簇头节点 else: # 如果下一轮成为簇头节点,更新能量消耗和状态 if next_round_cluster_head[i]: cluster_head[i] = True node_energy[i] -= node_energy[i] * 0.05 # 簇头节点能量消耗更大 else: node_energy[i] -= node_energy[i] * 0.01 # 普通节点能量消耗较小 ``` 最后,我们可以将Leach协议的过程和簇状拓扑结构进行可视化,如下所示: ```python # 绘制网络拓扑图 pos = nx.get_node_attributes(G, 'pos') # 模拟Leach协议过程 for round in range(num_rounds): # 计算颜色 colors = [] for i in range(num_nodes): if cluster_head[i]: colors.append('red') # 簇头节点为红色 else: colors.append('blue') # 普通节点为蓝色 # 绘制网络拓扑图 plt.clf() nx.draw(G, pos, node_color=colors, with_labels=True) plt.title('Round {}'.format(round)) plt.pause(0.1) # 更迭簇头节点 for i in range(num_nodes): # 如果是簇头节点 if cluster_head[i]: # 如果能量低于阈值,不再担任簇头节点 if node_energy[i] < node_threshold[i]: cluster_head[i] = False else: # 继续担当簇头节点 next_round_cluster_head[i] = True # 如果不是簇头节点 else: # 如果下一轮成为簇头节点,更新能量消耗和状态 if next_round_cluster_head[i]: cluster_head[i] = True node_energy[i] -= node_energy[i] * 0.05 # 簇头节点能量消耗更大 else: node_energy[i] -= node_energy[i] * 0.01 # 普通节点能量消耗较小 # 计算每个节点成为簇头节点的概率 for i in range(num_nodes): if cluster_head[i]: # 如果已经是簇头节点,不需要再次选取 next_round_cluster_head[i] = False else: # 计算概率 if random.uniform(0, 1) < node_energy[i] / (node_threshold[i] * num_nodes): next_round_cluster_head[i] = True else: next_round_cluster_head[i] = False ``` 这样,我们就完成了这个项目。完整代码如下:
阅读全文

相关推荐

最新推荐

recommend-type

python实现小世界网络生成

小世界网络是一种复杂网络模型,由Strogatz和Watts在1998年提出,旨在解释许多现实世界网络中观察到的特定结构。这些网络既具有短的平均路径长度(小世界特性),又具有高的聚类系数,即节点倾向于与其邻居的邻居...
recommend-type

无线传感器网络DV-Hop定位改进算法

然而,由于成本、能量消耗以及环境制约,为每个传感器节点配备传统的GPS设备并不现实。因此,开发适合WSNs的定位算法显得尤为关键。 DV-Hop定位算法是一种无需测距的定位方法,其核心思想是通过节点间的多跳通信来...
recommend-type

python实现随机森林random forest的原理及方法

在Python中,我们可以使用`sklearn.ensemble`库中的`RandomForestClassifier`或`RandomForestRegressor`来实现随机森林模型。以下是一些关键参数: - **n_estimators**:决策树的数量。增加此值可以提高模型的准确...
recommend-type

2020 年TI 杯大学生电子设计竞赛 无线运动传感器节点设计(A 题

【无线运动传感器节点设计(A题)】是一个针对大学生的电子设计竞赛,旨在利用TI公司的ADS1292模拟前端芯片和LMT70温度传感器,构建一个能够无线收集、记录和传输心电信息、体表温度以及运动信息的设备。这个设计...
recommend-type

BP神经网络原理及Python实现代码

在提供的代码中,作者通过构建一个简单的神经网络并训练,最终在构造的数据集上达到了97%的分类准确率。这个实现没有依赖高级的深度学习框架,而是直接使用了Python的NumPy库进行数值计算,这有助于理解神经网络的...
recommend-type

Angular程序高效加载与展示海量Excel数据技巧

资源摘要信息: "本文将讨论如何在Angular项目中加载和显示Excel海量数据,具体包括使用xlsx.js库读取Excel文件以及采用批量展示方法来处理大量数据。为了更好地理解本文内容,建议参阅关联介绍文章,以获取更多背景信息和详细步骤。" 知识点: 1. Angular框架: Angular是一个由谷歌开发和维护的开源前端框架,它使用TypeScript语言编写,适用于构建动态Web应用。在处理复杂单页面应用(SPA)时,Angular通过其依赖注入、组件和服务的概念提供了一种模块化的方式来组织代码。 2. Excel文件处理: 在Web应用中处理Excel文件通常需要借助第三方库来实现,比如本文提到的xlsx.js库。xlsx.js是一个纯JavaScript编写的库,能够读取和写入Excel文件(包括.xlsx和.xls格式),非常适合在前端应用中处理Excel数据。 3. xlsx.core.min.js: 这是xlsx.js库的一个缩小版本,主要用于生产环境。它包含了读取Excel文件核心功能,适合在对性能和文件大小有要求的项目中使用。通过使用这个库,开发者可以在客户端对Excel文件进行解析并以数据格式暴露给Angular应用。 4. 海量数据展示: 当处理成千上万条数据记录时,传统的方式可能会导致性能问题,比如页面卡顿或加载缓慢。因此,需要采用特定的技术来优化数据展示,例如虚拟滚动(virtual scrolling),分页(pagination)或懒加载(lazy loading)等。 5. 批量展示方法: 为了高效显示海量数据,本文提到的批量展示方法可能涉及将数据分组或分批次加载到视图中。这样可以减少一次性渲染的数据量,从而提升应用的响应速度和用户体验。在Angular中,可以利用指令(directives)和管道(pipes)来实现数据的分批处理和显示。 6. 关联介绍文章: 提供的文章链接为读者提供了更深入的理解和实操步骤。这可能是关于如何配置xlsx.js在Angular项目中使用、如何读取Excel文件中的数据、如何优化和展示这些数据的详细指南。读者应根据该文章所提供的知识和示例代码,来实现上述功能。 7. 文件名称列表: "excel"这一词汇表明,压缩包可能包含一些与Excel文件处理相关的文件或示例代码。这可能包括与xlsx.js集成的Angular组件代码、服务代码或者用于展示数据的模板代码。在实际开发过程中,开发者需要将这些文件或代码片段正确地集成到自己的Angular项目中。 总结而言,本文将指导开发者如何在Angular项目中集成xlsx.js来处理Excel文件的读取,以及如何优化显示大量数据的技术。通过阅读关联介绍文章和实际操作示例代码,开发者可以掌握从后端加载数据、通过xlsx.js解析数据以及在前端高效展示数据的技术要点。这对于开发涉及复杂数据交互的Web应用尤为重要,特别是在需要处理大量数据时。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南

![【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南](https://www.vandyke.com/images/screenshots/securecrt/scrt_94_windows_session_configuration.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT简介与高亮功能概述 SecureCRT是一款广泛应用于IT行业的远程终端仿真程序,支持
recommend-type

如何设计一个基于FPGA的多功能数字钟,实现24小时计时、手动校时和定时闹钟功能?

设计一个基于FPGA的多功能数字钟涉及数字电路设计、时序控制和模块化编程。首先,你需要理解计时器、定时器和计数器的概念以及如何在FPGA平台上实现它们。《大连理工数字钟设计:模24计时器与闹钟功能》这份资料详细介绍了实验报告的撰写过程,包括设计思路和实现方法,对于理解如何构建数字钟的各个部分将有很大帮助。 参考资源链接:[大连理工数字钟设计:模24计时器与闹钟功能](https://wenku.csdn.net/doc/5y7s3r19rz?spm=1055.2569.3001.10343) 在硬件设计方面,你需要准备FPGA开发板、时钟信号源、数码管显示器、手动校时按钮以及定时闹钟按钮等
recommend-type

Argos客户端开发流程及Vue配置指南

资源摘要信息:"argos-client:客户端" 1. Vue项目基础操作 在"argos-client:客户端"项目中,首先需要进行项目设置,通过运行"yarn install"命令来安装项目所需的依赖。"yarn"是一个流行的JavaScript包管理工具,它能够管理项目的依赖关系,并将它们存储在"package.json"文件中。 2. 开发环境下的编译和热重装 在开发阶段,为了实时查看代码更改后的效果,可以使用"yarn serve"命令来编译项目并开启热重装功能。热重装(HMR, Hot Module Replacement)是指在应用运行时,替换、添加或删除模块,而无需完全重新加载页面。 3. 生产环境的编译和最小化 项目开发完成后,需要将项目代码编译并打包成可在生产环境中部署的版本。运行"yarn build"命令可以将源代码编译为最小化的静态文件,这些文件通常包含在"dist/"目录下,可以部署到服务器上。 4. 单元测试和端到端测试 为了确保项目的质量和可靠性,单元测试和端到端测试是必不可少的。"yarn test:unit"用于运行单元测试,这是测试单个组件或函数的测试方法。"yarn test:e2e"用于运行端到端测试,这是模拟用户操作流程,确保应用程序的各个部分能够协同工作。 5. 代码规范与自动化修复 "yarn lint"命令用于代码的检查和风格修复。它通过运行ESLint等代码风格检查工具,帮助开发者遵守预定义的编码规范,从而保持代码风格的一致性。此外,它也能自动修复一些可修复的问题。 6. 自定义配置与Vue框架 由于"argos-client:客户端"项目中提到的Vue标签,可以推断该项目使用了Vue.js框架。Vue是一个用于构建用户界面的渐进式JavaScript框架,它允许开发者通过组件化的方式构建复杂的单页应用程序。在项目的自定义配置中,可能需要根据项目需求进行路由配置、状态管理(如Vuex)、以及与后端API的集成等。 7. 压缩包子文件的使用场景 "argos-client-master"作为压缩包子文件的名称,表明该项目可能还涉及打包发布或模块化开发。在项目开发中,压缩包子文件通常用于快速分发和部署代码,或者是在模块化开发中作为依赖进行引用。使用压缩包子文件可以确保项目的依赖关系清晰,并且方便其他开发者快速安装和使用。 通过上述内容的阐述,我们可以了解到在进行"argos-client:客户端"项目的开发时,需要熟悉的一系列操作,包括项目设置、编译和热重装、生产环境编译、单元测试和端到端测试、代码风格检查和修复,以及与Vue框架相关的各种配置。同时,了解压缩包子文件在项目中的作用,能够帮助开发者高效地管理和部署代码。