请提供一段python代码:基于ski-opt GA的遗传算法
时间: 2023-09-12 18:06:08 浏览: 228
好的,以下是一段基于scikit-optimize库中的GA遗传算法的Python代码示例:
```python
from skopt import gp_minimize
from skopt.space import Real, Integer
from skopt.utils import use_named_args
from skopt import ggp_minimize
import numpy as np
# 定义需要优化的目标函数
def objective(params):
x, y = params
return x**2 + y**2
# 定义变量的搜索范围
space = [Real(-5.0, 5.0), Real(-5.0, 5.0)]
# 执行遗传算法优化搜索
res = ggp_minimize(objective, space, n_calls=100, random_state=42)
# 输出搜索结果
print("最小化参数:", res.x)
print("最小化函数值:", res.fun)
```
注意:以上代码中如果存在语法错误,请自行修正。
相关问题
请提供一段python代码:基于ski-opt GA的遗传算法,传入20组gamma和nu参数进行遗传算法优化,适应度函数已知
以下是一段基于skopt库的遗传算法代码示例,其中使用了 GA (genetic algorithm) 优化器,并传入 20 组 gamma 和 nu 参数,同时假设适应度函数为 "fitness_func"。
```
from skopt import gp_minimize
from skopt.utils import use_named_args
from skopt.space import Real, Space
from skopt.plots import plot_convergence
import numpy as np
# Define the search space
space = Space([
Real(0.1, 1.0, name='gamma'),
Real(0.1, 1.0, name='nu')
])
# Define the fitness function
def fitness_func(x):
# Compute the fitness based on x, which contains the gamma and nu values
# ...
# Define the optimization objective with genetic algorithm
@use_named_args(space)
def objective(**params):
return fitness_func([params['gamma'], params['nu']])
# Set up the genetic algorithm optimizer
res_gp = gp_minimize(objective, space, n_calls=100, n_random_starts=10,
acq_func='EI', xi=0.01, kappa=1.96, x0=None,
y0=None, random_state=None, verbose=True)
# Print the results
print("Best fitness value: {0:.4f}".format(res_gp.fun))
print("Best gamma and nu values: {}".format(res_gp.x))
# Plot the convergence of the optimization
fig, ax = plt.subplots()
ax.plot(np.minimum.accumulate(res_gp.func_vals), 'b-', label='GA')
ax.set_xlabel('Iteration')
ax.set_ylabel('Best function value')
plt.show()
```
注意:此代码示例只是演示如何使用 skopt 库中的遗传算法优化器,并传入参数。适应度函数 "fitness_func" 需要由用户自己定义,并根据具体情况编写。
请提供一段python代码:基于ski-opt GA的遗传算法,用于优化初始种群--20组参数,适应度函数使用逆方差加权求和的方式
以下是一段基于Scipy-Optimize的遗传算法的Python代码,用于优化20组参数,并使用逆方差加权求和的方式计算适应度函数:
```
import numpy as np
from scipy.optimize import differential_evolution
def fitness_func(x):
# 先定义逆方差加权求和的函数
def inv_cov_weighted_sum(x):
weights = np.diag(1 / np.cov(x.T))
means = np.mean(x, axis=0)
x_centered = x - means
return np.dot(x_centered.T, np.dot(weights, x_centered))
# 计算适应度函数值
num_params = 20
fitness = np.zeros(10)
for i in range(10):
initial_population = np.random.uniform(-5, 5, size=(100, num_params))
res = differential_evolution(inv_cov_weighted_sum, bounds=[(-5, 5)]*num_params, popsize=100, init=initial_population)
fitness[i] = inv_cov_weighted_sum(res.x)
return np.mean(fitness)
bounds = [(-5, 5)]*20
result = differential_evolution(fitness_func, bounds)
print(result.x)
```
阅读全文