基于python,写一个指针式仪表自动读数的代码。首先对输入的图像进行霍夫直线检测出指针,再求得指针与起始刻度的夹角。最后根据仪表配置文件中的起始终止刻度角度计算出指针式仪表的读数,实现指针式仪表的自动读数功能。

时间: 2024-04-30 19:17:16 浏览: 9
好的,我明白你的要求了。以下是基于Python的代码实现指针式仪表自动读数功能: 首先需要导入相关的库,包括cv2(OpenCV),numpy和math: ```python import cv2 import numpy as np import math ``` 然后定义一个函数来进行霍夫直线检测,从而找到指针: ```python def get_pointer(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) lines = cv2.HoughLines(edges, 1, np.pi / 180, 200) pointer = None if lines is not None: for line in lines: rho, theta = line[0] if abs(theta - np.pi / 2) < np.pi / 3: a = math.cos(theta) b = math.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * (a)) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * (a)) pointer = ((x1, y1), (x2, y2)) break return pointer ``` 上述代码中,首先将输入图像转换为灰度图像,然后使用Canny算子进行边缘检测。接下来使用霍夫直线变换检测所有直线,并选择与y轴夹角在60度以内的直线作为指针的候选线。最后返回指针的起始和结束点坐标。 接下来,定义一个函数来计算指针相对于起始刻度的夹角: ```python def get_angle(pointer, start_angle): dx = pointer[1][0] - pointer[0][0] dy = pointer[1][1] - pointer[0][1] angle = math.atan2(dy, dx) * 180 / np.pi if angle < 0: angle += 360 angle -= start_angle if angle < 0: angle += 360 return angle ``` 上述代码中,首先计算指针起始点与结束点的坐标差,然后使用arctan函数计算角度,并将弧度转换为角度。最后将起始角度减去当前角度,得到相对于起始刻度的夹角。 最后,定义一个函数来根据仪表配置文件中的起始终止刻度角度计算出指针式仪表的读数: ```python def read_scale(angle, start_scale, end_scale, n): scale_angle = (end_scale - start_scale) / n scale = int(angle / scale_angle) if scale < 0: scale = 0 elif scale > n: scale = n return scale ``` 上述代码中,首先计算出每个刻度之间的夹角,然后根据当前夹角计算出指针所在的刻度位置,最后返回刻度位置。 综合以上三个函数,可以实现指针式仪表自动读数的功能: ```python def auto_read_scale(img, start_angle, start_scale, end_scale, n): pointer = get_pointer(img) if pointer is None: return None angle = get_angle(pointer, start_angle) scale = read_scale(angle, start_scale, end_scale, n) return scale ``` 上述代码中,auto_read_scale函数接收一个图像、起始角度、起始终止刻度角度以及刻度数,先调用get_pointer函数找到指针的位置,然后使用get_angle函数计算出指针的相对夹角,最后使用read_scale函数计算出指针所在的刻度位置,并返回刻度位置。 希望以上代码可以满足您的需求。

相关推荐

最新推荐

recommend-type

Python实现霍夫圆和椭圆变换代码详解

主要介绍了Python实现霍夫圆和椭圆变换代码详解,具有一定借鉴价值,需要的朋友可以参考下
recommend-type

第十一节 图像处理之霍夫检测直线

那么再想想对于一副图像所有点都进行映射,随便假设一副100*100的图像(很小吧),就有10000个点,对每个点假设就映射36组(ρ,θ)参数(此时角度的步长是10度了,10度,已经非常大的一个概念了),那么总共需要映射...
recommend-type

opencv3/C++实现霍夫圆/直线检测

今天小编就为大家分享一篇opencv3/C++实现霍夫圆/直线检测,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。