缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中有着非常广泛的应用,如常见的CPU缓存、数据库缓存和浏览器缓存。 缓存的大小有限,当缓存被填满时,哪些数据应该被清理?哪些数据应该被保留?这就需要缓存淘汰算法来决定。 LRU(最近最少使用)算法就是一种常用的缓存淘汰算法,算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。 我们可以用一个数据结构来维护缓存,访问新的数据时,若缓存未满,可以直接放入缓存,若缓存已满,删除最久未访问的数据后再放入新的数据。当再次访问缓存中已有的数据时,将该数据调整为最新访问。 即该数据结构可能需要做频繁的插入和删除操作,请完成以下问题: (1)为该数据结构设计一种存储结构,用C语言写出类型定义,每个成员加上注释,其中数据定义为int类型。 (2)使用(1)中定义的存储结构,实现LRU算法中的插入新数据操作(需要考虑缓存已满和未满两种情况),自行定义函数名和参数。

时间: 2024-03-25 11:39:38 浏览: 19
(1) 一种存储结构的类型定义如下: ``` typedef struct { int key; // 数据的键值 int value; // 数据的值 struct Node *prev; // 指向前驱节点的指针 struct Node *next; // 指向后继节点的指针 } Node; typedef struct { int capacity; // 缓存的容量 int size; // 缓存中已有数据的数量 Node *head; // 指向链表头部的指针 Node *tail; // 指向链表尾部的指针 Node **hash; // 指向哈希表的指针 } LRUCache; ``` (2) 插入新数据操作的实现如下,我们假设LRUCache中的哈希表采用开放地址法实现: ``` void put(LRUCache* cache, int key, int value) { Node *node = cache->hash[key % cache->capacity]; // 找到哈希表中对应的节点 if(node == NULL) { // 如果节点不存在,说明缓存中没有该数据 node = malloc(sizeof(Node)); // 创建一个新的节点 node->key = key; // 设置节点的键值 node->value = value; // 设置节点的值 node->prev = NULL; // 设置节点的前驱指针为空 node->next = cache->head; // 设置节点的后继指针指向链表头部 if(cache->head != NULL) { // 如果链表不为空 cache->head->prev = node; // 将链表头部节点的前驱指针指向新节点 } else { cache->tail = node; // 如果链表为空,将链表尾部指针指向新节点 } cache->head = node; // 将链表头部指针指向新节点 cache->hash[key % cache->capacity] = node; // 将新节点插入哈希表中 cache->size++; // 缓存大小加1 if(cache->size > cache->capacity) { // 如果缓存已满 Node *tail = cache->tail; // 找出链表尾部节点 cache->tail = tail->prev; // 将链表尾部指针指向倒数第二个节点 cache->tail->next = NULL; // 将倒数第二个节点的后继指针置为空 cache->hash[tail->key % cache->capacity] = NULL; // 将链表尾部节点在哈希表中的位置置为空 free(tail); // 释放链表尾部节点的内存空间 cache->size--; // 缓存大小减1 } } else { // 如果节点存在,说明缓存中已有该数据 node->value = value; // 更新节点的值 if(node != cache->head) { // 如果节点不在链表头部,需要将节点移动到链表头部 node->prev->next = node->next; // 将节点的前驱节点的后继指针指向节点的后继节点 if(node->next != NULL) { // 如果节点不在链表尾部 node->next->prev = node->prev; // 将节点的后继节点的前驱指针指向节点的前驱节点 } else { cache->tail = node->prev; // 如果节点在链表尾部,将链表尾部指针指向节点的前驱节点 } node->prev = NULL; // 将节点的前驱指针置为空 node->next = cache->head; // 将节点的后继指针指向链表头部 cache->head->prev = node; // 将链表头部节点的前驱指针指向节点 cache->head = node; // 将链表头部指针指向节点 } } } ```

相关推荐

最新推荐

recommend-type

基于CYUSB3014 USB3.0总线开发技术

USB3.0作为一种高速通用接口,相较于USB2.0,其传输速率显著提升,可达5.0Gbps,是USB2.0的10倍。在本文中,作者探讨了如何利用FPGA(Field-Programmable Gate Array,现场可编程门阵列)作为控制核心,结合Cypress...
recommend-type

归纳 命题版.docx

在程序执行中,高速缓存与主存的地址映射由硬件自动完成,以提高数据访问速度。 21. **计算机系统主存**: 主存主要由 DRAM 构成,还有 SRAM 和其他类型的存储器如 RAM 和 ROM。 22. **海明码**: 海明码利用...
recommend-type

计算机应用技术(实用手册)

开机画面现在有两种,一种为AMI公司开发的,一种为Phoenix-award两家公司合并共同开发的;下面这张图为Phoenix-award开机自画面: Phoenix-award workstation BIOS V6.00PC,An Energy star Ally copyright(c) 1984...
recommend-type

SuperMap iMobile 8C(2017) for Android 离线数据使用说明

- 这种方式适用于直接读取本地存储的缓存文件,用户可以在应用内选择对应的影像插件,指定缓存文件路径,然后加载到地图视图中。 通过以上步骤,用户可以在Android设备上实现地图数据的离线访问,无需依赖网络连接...
recommend-type

zktime5.0考勤机连接sqlserver数据库,创建及连接方法.pdf

12. zktime5.0考勤机的数据库性能优化:zktime5.0考勤机需要对数据库进行性能优化,例如使用索引、缓存和查询优化等技术,减少数据库的响应时间和提高数据的读写速度。 13. zktime5.0考勤机的数据库安全管理:...
recommend-type

电力电子与电力传动专业《电子技术基础》期末考试试题

"电力电子与电力传动专业《电子技术基础》期末考试题试卷(卷四)" 这份试卷涵盖了电子技术基础中的多个重要知识点,包括运放的特性、放大电路的类型、功率放大器的作用、功放电路的失真问题、复合管的运用以及集成电路LM386的应用等。 1. 运算放大器的理论: - 理想运放(Ideal Op-Amp)具有无限大的开环电压增益(A_od → ∞),这意味着它能够提供非常高的电压放大效果。 - 输入电阻(rid → ∞)表示几乎不消耗输入电流,因此不会影响信号源。 - 输出电阻(rod → 0)意味着运放能提供恒定的电压输出,不随负载变化。 - 共模抑制比(K_CMR → ∞)表示运放能有效地抑制共模信号,增强差模信号的放大。 2. 比例运算放大器: - 闭环电压放大倍数取决于集成运放的参数和外部反馈电阻的比例。 - 当引入负反馈时,放大倍数与运放本身的开环增益和反馈网络电阻有关。 3. 差动输入放大电路: - 其输入和输出电压的关系由差模电压增益决定,公式通常涉及输入电压差分和输出电压的关系。 4. 同相比例运算电路: - 当反馈电阻Rf为0,输入电阻R1趋向无穷大时,电路变成电压跟随器,其电压增益为1。 5. 功率放大器: - 通常位于放大器系统的末级,负责将较小的电信号转换为驱动负载的大电流或大电压信号。 - 主要任务是放大交流信号,并将其转换为功率输出。 6. 双电源互补对称功放(Bipolar Junction Transistor, BJT)和单电源互补对称功放(Single Supply Operational Amplifier, Op-Amp): - 双电源互补对称功放常被称为OTL电路,而单电源对称功放则称为OCL电路。 7. 交越失真及解决方法: - 在功放管之间接入偏置电阻和二极管,提供适当的偏置电流,使功放管在静态时工作在线性区,避免交越失真。 8. 复合管的电流放大系数: - 复合管的电流放大系数约等于两个组成管子的电流放大系数之乘积。 9. 复合管的构建原则: - 确保每个参与复合的管子的电流方向正确。 - 复合管的类型由参与复合的两个管子中的一种类型决定。 10. 复合管的优势与缺点: - 优点是能提高电流放大能力,增加集电极电流的负载能力。 - 缺点是热稳定性较差,可通过在第一个管子的发射极连接电阻来改善。 11. LM386集成电路: - 脚2是反相输入端,脚3是同相输入端。 - 脚1和8之间的外接元件用于调节增益和频率响应。 - 脚7通常是电源接地端。 - 脚5是一个内部电平移位器,用于设置工作电压范围。 - 脚4和6通常连接到电源的正负极。 12. 整流滤波电路: - 直流电压的稳定性受整流二极管的前向电压和滤波电容的充电/放电特性影响。 - 当二极管的前向电压变化或滤波电容的值改变时,输出直流电压会有波动。 这份试卷全面测试了学生对电子技术基础理论的理解,包括放大电路设计、运算放大器应用、功率放大器的工作原理,以及集成电路在实际电路中的运用。学生需要掌握这些概念并能灵活应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择

![VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择](https://img-blog.csdnimg.cn/a02739db1463453db084046846e0549d.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Lmd5LmF5ZGA,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. 深度学习模型概述 深度学习模型是一种强大的机器学习算法,它通过模拟人脑中的神经网络结构来学习和处理复杂数据。深度学习模
recommend-type

mysql 索引类型

MySQL中的索引类型主要有以下几种: 1. **B树索引(BTREE)**:这是最常用的索引类型,适用于大多数查询操作。B树索引的数据结构类似于一颗平衡二叉树,支持范围查询和排序。 2. **哈希索引(HASH)**:也称为散列索引,查找速度非常快,但只适用于等值查询(等于某个值),不支持范围查询。 3. **全文索引(FULLTEXT)**:用于全文本搜索,如MATCH AGAINST语句,适合于对文本字段进行复杂的搜索。 4. **空间索引(SPATIAL)**:如R-Tree,专为地理位置数据设计,支持点、线、面等几何形状的操作。 5. **唯一索引(UNIQUE)**:B树
recommend-type

电力电子技术期末考试题:电力客户与服务管理专业

"电力客户与服务管理专业《电力电子技术》期末考试题试卷(卷C)" 这份试卷涵盖了电力电子技术的基础知识,主要涉及放大电路的相关概念和分析方法。以下是试卷中的关键知识点: 1. **交流通路**:在放大器分析中,交流通路是指忽略直流偏置时的电路模型,它是用来分析交流信号通过放大器的路径。在绘制交流通路时,通常将电源电压视为短路,保留交流信号所影响的元件。 2. **放大电路的分析方法**:包括直流通路分析、交流通路分析和瞬时值图解法。直流通路关注的是静态工作点的确定,交流通路关注的是动态信号的传递。 3. **静态工作点稳定性**:当温度变化时,三极管参数会改变,可能导致放大电路静态工作点的漂移。为了稳定工作点,可以采用负反馈电路。 4. **失真类型**:由于三极管的非线性特性,会导致幅度失真,即非线性失真;而放大器对不同频率信号放大倍数的不同则可能导致频率响应失真或相位失真。 5. **通频带**:表示放大器能有效放大的频率范围,通常用下限频率fL和上限频率fH来表示,公式为fH-fL。 6. **多级放大器的分类**:包括输入级、中间级和输出级。输入级负责处理小信号,中间级提供足够的电流驱动能力,输出级则要满足负载的需求。 7. **耦合方式**:多级放大电路间的耦合有直接耦合、阻容耦合和变压器耦合,每种耦合方式有其特定的应用场景。 8. **交流和直流信号放大**:若需要同时放大两者,通常选用直接耦合的方式。 9. **输入和输出电阻**:多级放大电路的输入电阻等于第一级的输入电阻,输出电阻等于最后一级的输出电阻。总电压放大倍数是各级放大倍数的乘积。 10. **放大器的基本组合状态**:包括共基放大、共集放大(又称射极跟随器)和共源放大。共集放大电路的电压放大倍数接近于1,但具有高输入电阻和低输出电阻的特性。 11. **场效应管的工作区域**:场效应管的输出特性曲线有截止区、饱和区和放大区。在放大区,场效应管可以作为放大器件使用。 12. **场效应管的控制机制**:场效应管利用栅极-源极间的电场来控制漏极-源极间的电流,因此被称为电压控制型器件。根据结构和工作原理,场效应管分为结型场效应管和绝缘栅型场效应管(MOSFET)。 13. **场效应管的电极**:包括源极(Source)、栅极(Gate)和漏极(Drain)。 14. **混合放大电路**:场效应管与晶体三极管结合可以构成各种类型的放大电路,如互补对称电路(如BJT的差分对电路)和MOSFET的MOS互补电路等。 这些知识点是电力电子技术中的基础,对于理解和设计电子电路至关重要。