基于spark的大数据项目

时间: 2023-07-24 21:43:46 浏览: 36
好的,关于基于Spark的大数据项目,我可以为你提供一些相关的信息。Spark是一个快速、通用的大数据处理框架,支持分布式计算,具有高度的可扩展性和容错性,被广泛应用于大数据处理领域。以下是一些基于Spark的大数据项目: 1. Spark Streaming:基于Spark的流处理框架,适用于实时数据处理和流式计算场景。 2. Spark SQL:支持SQL查询的Spark组件,以及集成了Hive的元数据和数据查询功能。 3. MLlib:Spark的机器学习库,提供了多种机器学习算法和工具,支持分布式计算。 4. GraphX:Spark的图计算库,支持大规模图计算和分析。 5. SparkR:R语言的接口,使得R用户可以使用Spark进行分布式计算和数据处理。 这些项目都是基于Spark的,可以根据不同的业务需求来选择合适的项目进行开发和应用。
相关问题

spark大数据架构初学入门基础详解

Spark大数据架构是一种基于内存计算的分布式计算框架,它可以处理大规模数据集并提供高效的数据处理能力。Spark架构包括Spark Core、Spark SQL、Spark Streaming、MLlib和GraphX等模块,每个模块都有不同的功能和用途。 Spark Core是Spark的核心模块,提供了分布式任务调度、内存计算、数据存储和数据管理等基础功能。Spark SQL是一个基于SQL语言的数据处理模块,可以将结构化数据转换为DataFrame或Dataset进行处理。Spark Streaming是一个实时数据处理模块,可以处理流式数据并提供实时分析和处理能力。MLlib是一个机器学习库,提供了常见的机器学习算法和工具。GraphX是一个图计算库,可以处理大规模图数据。 学习Spark大数据架构需要掌握Java或Scala编程语言、分布式系统和数据处理等基础知识。初学者可以通过阅读官方文档、参加培训课程和实践项目等方式来深入学习。在实践中,需要注意数据安全、性能优化和调试等方面的问题。

java大数据类项目推荐

以下是几个 Java 大数据类项目的推荐: 1. Apache Hadoop:Hadoop 是一个开源的分布式存储和计算的框架,它可以处理大规模数据。Hadoop 的生态系统包含了多个项目,包括 HDFS、MapReduce、Hive、Pig 等,这些项目都是基于 Java 编写的。 2. Apache Spark:Spark 是一个快速、通用的大数据处理引擎,它具有内存计算和容错机制,能够处理大规模的数据集。Spark 的核心是基于 Java 编写的。 3. Apache Flink:Flink 是一个分布式流处理引擎,它具有高吞吐量、低延迟、容错性好等特点。Flink 的核心也是基于 Java 编写的。 4. Apache Kafka:Kafka 是一个高吞吐量的分布式消息系统,它可以处理大量的实时数据流。Kafka 的生产者和消费者都可以使用 Java 语言进行编写。 5. Elasticsearch:Elasticsearch 是一个分布式、实时的搜索和分析引擎,它可以处理大量的数据和复杂的查询。Elasticsearch 的核心是基于 Java 编写的。 这些项目都是 Java 大数据类项目中的热门选择,具有广泛的应用和可拓展性。希望能够对您有所帮助。

相关推荐

### 回答1: 大数据开发工程师系列是指专门从事大数据开发的一类职业。Hadoop和Spark是大数据领域中最受欢迎的两个开源框架。 Hadoop是一个分布式计算框架,用于处理大规模数据集的分布式存储和计算。Hadoop的核心是Hadoop分布式文件系统(HDFS)和MapReduce计算模型。HDFS将数据分布存储在集群的多个节点上,MapReduce可以并行处理这些分布式数据。Hadoop具有高可靠性、高扩展性和高容错性的特点,并且还提供了许多其他工具和库,如Hive、Pig和HBase等。 Spark是一个快速、通用的大数据处理引擎,可以在多种数据源上进行高效的分布式计算。相比于Hadoop的MapReduce,Spark具有更快的数据处理速度和更强的扩展性。Spark提供了一个称为弹性分布式数据集(RDD)的抽象,可以在内存中高效地处理大规模数据集。此外,Spark还提供了许多高级组件和库,如Spark SQL、Spark Streaming和MLlib等,用于处理结构化数据、流式数据和机器学习。 作为大数据开发工程师,掌握Hadoop和Spark是非常重要的。使用Hadoop可以处理海量数据,并且具有高可靠性和容错性。而Spark则能够快速高效地处理大规模数据,并提供了更多的数据处理和分析功能。 大数据开发工程师需要熟悉Hadoop和Spark的使用和调优技巧,以及相关的编程语言和工具,如Java、Scala和Python。他们需要了解数据处理的算法和模型,并能够设计和实现高效的分布式计算方案。此外,大数据开发工程师还需要具备良好的沟通能力和团队合作能力,能够与数据科学家和业务团队紧密合作,共同解决实际问题。 总之,大数据开发工程师系列是一个专门从事大数据开发的职业群体。而Hadoop和Spark则是这个职业群体中最重要的两个工具,他们分别用于大规模数据处理和分布式计算。掌握Hadoop和Spark的使用和优化技巧,是成为一名优秀的大数据开发工程师的关键能力。 ### 回答2: 大数据开发工程师系列主要涉及到两个重要的技术:Hadoop和Spark。 Hadoop是一个开源的分布式计算框架,主要用于存储和处理大规模数据集。它通过将数据分散存储在集群中的多个节点上,并在节点之间进行数据通信和计算,实现了数据的并行处理和高可靠性。Hadoop的核心工具是HDFS(Hadoop分布式文件系统)和MapReduce(一种用于分布式计算的编程模型)。HDFS用于将数据分布式存储在集群中,而MapReduce则是用于分布式计算的框架,通过将计算任务分解成多个小任务并在各个节点上并行执行,大大提高了数据处理的效率和性能。 Spark是当前最受欢迎的大数据计算框架之一,也是一个开源项目。与Hadoop相比,Spark具有更快的数据处理速度和更强大的功能。Spark提供了一个可扩展的分布式数据处理框架,支持数据处理、机器学习、图计算等多种大数据应用场景。与传统的基于磁盘的计算框架相比,Spark利用内存计算的优势,可以快速地对大规模数据进行处理和分析。此外,Spark还提供了丰富的API和开发工具,使开发人员可以更轻松地构建和调试大数据应用程序。 作为大数据开发工程师,掌握Hadoop和Spark是必不可少的。熟悉Hadoop的使用和原理,能够有效地存储和处理大规模数据集。而对于Spark的掌握,则可以提高数据处理的速度和效率,使得大数据分析和挖掘更加容易实现。因此,大数据开发工程师需要具备对Hadoop和Spark的深入理解和熟练应用,同时还需要具备数据分析、算法和编程等多方面的技能,以应对复杂的大数据挑战。 ### 回答3: 大数据开发工程师是一个专注于处理大数据的职位,主要负责使用各种工具和技术来处理和分析大规模的数据集。 Hadoop和Spark是目前在大数据处理领域中非常流行的两个开源工具。Hadoop是一个分布式系统基础架构,可以在集群中存储和处理大规模数据。它的核心是Hadoop分布式文件系统(HDFS)和MapReduce计算模型。HDFS将数据分散存储在集群的不同节点上,而MapReduce模型则提供了一种并行处理数据的方式。大数据开发工程师需要熟悉Hadoop的架构和命令行工具,能够编写MapReduce程序来处理数据。 Spark是一个快速和通用的大数据处理引擎,可以在大规模集群上执行数据处理任务。它拥有比Hadoop更高的性能和更丰富的功能。Spark提供了强大的机器学习、图计算和流处理等功能。大数据开发工程师需要熟悉Spark的API和编程模型,能够使用Spark的各种组建和工具进行数据处理和分析。 作为大数据开发工程师,掌握Hadoop和Spark是非常重要的。使用Hadoop和Spark可以有效地处理大规模数据,提取有价值的信息。大数据开发工程师通过编写和优化MapReduce程序来实现数据处理的需求,同时也能利用Spark提供的机器学习和流处理等功能来进行更复杂的数据分析。通过合理地使用Hadoop和Spark,大数据开发工程师可以减少数据处理的时间和成本,提高数据处理的效率和准确性。
大数据实时计算系统是如今互联网行业中非常重要的一个领域,本篇文章将介绍一个基于Java、Kafka、Spark Streaming的大数据实时计算系统,该系统能够实时地处理海量的数据,并且对数据进行实时分析和处理,从而为用户提供有价值的数据分析和预测服务。 一、系统架构设计 系统的整体架构如下图所示: ![系统架构设计图](https://img-blog.csdnimg.cn/20220105104312759.png) 从上图可以看出,整个系统分为四个主要模块: 1. 数据采集模块:该模块负责采集用户的行为数据,并将数据发送到Kafka消息队列中。 2. 数据处理模块:该模块负责从Kafka消息队列中读取数据,并对数据进行实时处理和分析,从而生成有价值的数据。 3. 数据存储模块:该模块负责将处理后的数据存储到HDFS分布式文件系统中,以便后续进行离线分析和处理。 4. 数据展示模块:该模块负责将处理后的数据展示给用户,提供数据分析和预测服务。 二、系统模块详细设计 1. 数据采集模块 数据采集模块主要负责采集用户的行为数据,并将数据发送到Kafka消息队列中。采集模块使用Java编写,主要包括以下几个模块: - 数据采集模块:负责采集用户的行为数据,并将数据发送到Kafka消息队列中。 - 数据发送模块:负责将采集到的数据发送到Kafka消息队列中。 - 配置文件模块:负责读取系统配置文件,包括Kafka消息队列的配置信息等。 2. 数据处理模块 数据处理模块主要负责从Kafka消息队列中读取数据,并对数据进行实时处理和分析,从而生成有价值的数据。数据处理模块使用Spark Streaming框架编写,主要包括以下几个模块: - 数据读取模块:负责从Kafka消息队列中读取数据,并转化为Spark Streaming中的DStream数据结构。 - 数据处理模块:负责对DStream数据进行实时处理和分析,从而生成有价值的数据。 - 数据输出模块:负责将处理后的数据输出到HDFS分布式文件系统中。 - 配置文件模块:负责读取系统配置文件,包括Kafka消息队列的配置信息、Spark Streaming框架的配置信息等。 3. 数据存储模块 数据存储模块主要负责将处理后的数据存储到HDFS分布式文件系统中,以便后续进行离线分析和处理。数据存储模块使用Hadoop HDFS编写,主要包括以下几个模块: - 数据写入模块:负责将处理后的数据写入到HDFS分布式文件系统中。 - 数据读取模块:负责从HDFS分布式文件系统中读取数据进行离线分析和处理。 - 配置文件模块:负责读取系统配置文件,包括HDFS的配置信息等。 4. 数据展示模块 数据展示模块主要负责将处理后的数据展示给用户,提供数据分析和预测服务。数据展示模块使用Web开发技术编写,主要包括以下几个模块: - 数据展示模块:负责将处理后的数据展示给用户,提供数据分析和预测服务。 - 数据查询模块:负责从HDFS分布式文件系统中查询数据进行展示。 - 配置文件模块:负责读取系统配置文件,包括Web服务的配置信息等。 三、系统运行流程 1. 数据采集模块从用户端采集数据,并将数据发送到Kafka消息队列中。 2. 数据处理模块从Kafka消息队列中读取数据,并进行实时处理和分析。 3. 数据处理模块将处理后的数据输出到HDFS分布式文件系统中。 4. 数据展示模块从HDFS分布式文件系统中读取数据进行展示,提供数据分析和预测服务。 四、系统优化 为了提高系统的性能和稳定性,我们可以采取以下几个优化措施: 1. 数据处理模块使用Spark Streaming框架,能够实现高效的实时数据处理和分析。 2. 数据存储模块使用Hadoop HDFS分布式文件系统,具有高可靠性和高扩展性。 3. 数据展示模块可以采用分布式Web服务架构,提高系统的并发处理能力。 4. 系统的各个模块之间采用异步通信机制,能够提高系统的并发性和响应速度。 五、总结 本文简要介绍了一个基于Java、Kafka、Spark Streaming的大数据实时计算系统,该系统能够实时地处理海量的数据,并且对数据进行实时分析和处理,从而为用户提供有价值的数据分析和预测服务。通过优化系统架构和技术选型,能够提高系统的性能和稳定性,为用户提供更好的服务。
实战大数据(hadoop spark flink)pdf是指利用大数据处理技术(如Hadoop、Spark、Flink)进行实际的数据分析和应用开发,并以PDF格式进行文档化。 大数据处理技术的出现,使得企业和机构可以处理和分析海量的数据,从而发掘出更多有价值的信息和洞察。而Hadoop、Spark和Flink作为目前比较流行的大数据处理框架,具有各自的特点和适用场景。 首先,Hadoop是一个基于分布式文件系统的大数据处理框架,能够实现数据的存储和计算的分布式处理。它采用MapReduce计算模型,可以对大规模数据进行批处理,适用于离线的数据分析任务。因此,在实战大数据的PDF中,可以介绍如何使用Hadoop进行大数据的存储和离线计算,以及如何利用Hadoop的生态系统组件如Hive、HBase等进行数据处理和查询。 其次,Spark是一个内存计算框架,它具有很强的处理速度和灵活性。Spark提供了一系列的API,可以方便地处理和分析大规模数据,同时支持批处理和实时流处理,适用于交互式和实时的数据分析任务。在实战大数据的PDF中,可以介绍如何使用Spark进行数据的处理和分析,包括数据清洗、特征工程、机器学习等方面的实践。 最后,Flink是一个流式计算框架,它具有低延迟、高吞吐量和状态一致性等特点。Flink支持基于时间的窗口计算、迭代计算和状态管理等功能,适用于复杂的实时数据分析任务。在实战大数据的PDF中,可以介绍如何使用Flink进行实时数据处理和分析,包括窗口计算、流式机器学习等方面的实践。 总之,实战大数据(hadoop spark flink)pdf可以从不同维度和使用场景来介绍大数据处理技术的应用,帮助读者了解和掌握这些技术在实际项目中的使用方法和优势。
大数据Hadoop平台标书是针对大数据处理需求,基于Hadoop分布式计算框架的一个项目招标书。该标书中会详细描述项目的需求、目标、范围和技术要求等内容。 首先,标书会介绍项目的背景和目的。例如,当前社会各行各业产生的数据量越来越庞大,需要能处理大规模数据的解决方案。而Hadoop平台正是一种开源的分布式计算框架,具备横向扩展、容错性强等优势,被广泛应用于大数据处理领域。 接着,标书中会详细说明项目的需求和范围。例如,项目需要搭建Hadoop集群来支持大规模数据的存储和计算。需要确保集群的稳定性、性能和安全性,以及能够高效地进行数据的处理和分析。同时,还可能要求集成其他数据处理工具和平台,如Hive、Spark等,以进一步提升数据处理的效率和灵活性。 在技术要求方面,标书会要求供应商具备以下能力和经验:具备搭建和维护Hadoop集群的技术能力;熟悉Hadoop的架构和核心组件,能够进行集群的规划、部署和优化;熟悉常用的数据处理工具和平台,能够提供相应的集成和支持;有丰富的大数据处理项目经验,并能提供相应的案例和客户评价等。 此外,标书可能还会要求供应商提供详细的项目实施计划、预算和人员配置等信息,以确保项目的顺利推进和成功交付。 总之,大数据Hadoop平台标书是一个详细描述大数据处理项目需求和技术要求的招标文件。它会通过说明项目背景、需求和技术要求,帮助供应商了解和理解项目的具体需求,并提交相应的技术方案和报价。
### 回答1: Python项目实战:使用PySpark对大数据进行分析 PySpark是一个基于Python的Spark API,它提供了一种分布式计算框架,可以用于处理大规模数据集。使用PySpark,可以轻松地对大数据进行分析和处理,从而提高数据分析的效率和准确性。 在实际项目中,使用PySpark进行大数据分析可以帮助我们更好地理解数据,发现数据中的规律和趋势,从而为业务决策提供更加准确的依据。同时,PySpark还可以帮助我们处理数据中的异常值和缺失值,提高数据的质量和可靠性。 总之,使用PySpark进行大数据分析是一项非常有价值的技能,可以帮助我们更好地应对现代数据分析的挑战。 ### 回答2: 随着互联网的飞速发展,数据的产生量越来越大,如何处理大数据是一个非常重要的问题。Python是目前主流的编程语言之一,尤其是在数据科学、机器学习、人工智能等领域广受欢迎。pyspark是Apache Spark的Python API,它提供了一个基于内存的分布式计算框架,可以处理大规模数据集,并且具有高性能、易于使用、可扩展的特点。 使用pyspark对大数据进行分析,我们可以使用Spark的分布式内存计算引擎,在集群中并行计算数据,并为大数据应用提供高效的解决方案。pyspark提供了丰富的API,可以实现对大数据的探索性分析、数据预处理、特征工程、模型训练和预测等操作。 在进行大数据分析前,首先需要创建SparkSession对象,这个对象是通往Spark的入口。接下来可以读取数据集,并进行一系列的数据清洗、转换等操作。常用的数据处理操作包括:数据过滤、数据映射、数据排序、数据聚合等。 在进行特征工程时,pyspark提供了大量的内置函数和转换操作,如Tokenizer、StopWordsRemover、VectorAssembler、StringIndexer等。可以使用这些函数将原始数据集转换为模型可用的特征向量。 对于大规模的数据集训练机器学习模型,pyspark提供了分布式的算法库,如线性回归、逻辑回归、决策树、随机森林、支持向量机、Gradient-Boosted Trees等。可以选择合适的算法库进行数据建模和预测,同时也可以根据需要扩展定制化算法库。 pyspark的强大功能让我们能够处理超大规模数据集,从而能够快速、高效地进行大数据分析。因此,学习pyspark对于数据科学家和数据工程师来说变得越来越重要,对于数据分析和挖掘等领域也有着巨大的应用前景。 ### 回答3: 随着大数据时代的到来,大数据分析已经成为了一个趋势。在处理大量数据时,传统的数据处理方式已经无法满足需求。而pyspark则成为了处理大数据的良好工具之一。pyspark是一个基于Apache Spark框架的Python API。采用大数据技术将数据分布式并行处理,具有高效、快速、可靠的特点。在处理大数据时,pyspark能使数据处理过程变得更加便捷和高效。 使用pyspark进行大数据分析时,需要先了解spark框架的运行方式。Spark框架是由一个 Driver程序和多个Executor程序组成。Driver程序负责任务分配和控制,而Executor程序负责具体的数据分析。在Driver程序中,通过pyspark编写代码进行数据处理和分析。数据处理的过程包括数据清洗、转换、过滤和计算等步骤。而在数据分析时,采用了三个重要的API:RDD、DataFrame和DataSet。 其中RDD是一种数据结构,表示“弹性分布式数据集”。RDD的特点是不可变性、分布式、容错性和操作性等。通过RDD来重复读取数据,对数据集进行处理和分析等操作。DataFrame是一种分布式数据表,类似于关系型数据库的表结构。通过DataFrame能够处理一些非结构化的数据。DataSet则是RDD和DataFrame的结合体,用于处理更加复杂的数据分析,如机器学习等。 在实现pyspark的大数据分析时,需要掌握一些重要的指令和API。常用的指令包括map、filter、reduce、flatMap等。这些指令能够帮助我们进行数据清洗、转换和过滤等操作。同时,pyspark还提供了一些高级的API如join、groupByKey、reduceByKey等。这些API可以用于处理和统计大量数据。 总之,pyspark的出现为我们提供了一种高效、便捷的方法来处理大数据。在实际的应用中,我们可以利用pyspark进行数据清洗、转换、过滤和计算等操作,实现数据的高效分析和处理。
尚硅谷是一家知名的IT培训机构,提供了丰富的大数据学习资源和课程。以下是基于尚硅谷提供的大数据学习路线的建议: 1. 基础知识:开始学习前,建议先掌握Java编程语言和数据库基础知识,这些对于后续学习大数据技术非常有帮助。 2. 大数据基础:尚硅谷提供了《大数据基础入门》课程,该课程包含了大数据技术的概述、Hadoop生态系统、HDFS分布式文件系统等基础内容。 3. 分布式计算:学习《Hadoop生态系统》课程,深入了解Hadoop的核心组件,如MapReduce、HDFS、YARN等,并掌握基本的Hadoop集群搭建和调优技巧。 4. 数据仓库与数据湖:学习《数据仓库与数据湖》课程,了解数据仓库和数据湖的概念、架构和设计原则,以及常用的数据仓库工具和技术。 5. 大数据实时计算:学习《大数据实时计算》课程,掌握Spark、Flink等实时计算框架的使用,了解流式计算和批处理计算的特点和应用场景。 6. 数据分析与挖掘:学习《大数据分析与挖掘》课程,掌握常用的数据分析和挖掘工具和算法,如机器学习、数据挖掘、推荐系统等。 7. 数据可视化与报告:学习《数据可视化与报表工具》课程,了解Tableau、Power BI等可视化工具的使用,学会将数据分析结果以直观的方式呈现。 尚硅谷还提供了大量的实战项目和案例,可以帮助学员将所学知识应用于实际场景中。此外,他们还提供了一对一的辅导和讨论群,可以与老师和其他学员交流和分享经验。 以上是基于尚硅谷提供的资源和课程所建议的大数据学习路线,你可以根据自己的实际情况和兴趣进行选择和调整。

最新推荐

Hadoop从业者为什么需要Spark?

5,Mahout前一阶段表示从现在起他们将不再接受任何形式的以MapReduce形式实现的算法,另外一方面,Mahout宣布新的算法基于Spark; 6,Cloudera的机器学习框架Oryx的执行引擎也将由Hadoop的MapReduce替换成Spark; ...

chromedriver_mac64_84.0.4147.30.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

深度学习在计算机视觉中的应用.docx

深度学习在计算机视觉中的应用.docx

chromedriver_linux64_72.0.3626.7.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

chromedriver_mac32_2.6.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

基于jsp的酒店管理系统源码数据库论文.doc

基于jsp的酒店管理系统源码数据库论文.doc

5G技术在医疗保健领域的发展和影响:全球疫情COVID-19问题

阵列14(2022)1001785G技术在医疗保健领域不断演变的作用和影响:全球疫情COVID-19问题MdMijanurRahmana,Mh,FatemaKhatunb,SadiaIslamSamia,AshikUzzamanaa孟加拉国,Mymensingh 2224,Trishal,Jatiya Kabi Kazi Nazrul Islam大学,计算机科学与工程系b孟加拉国Gopalganj 8100,Bangabandhu Sheikh Mujibur Rahman科技大学电气和电子工程系A R T I C L E I N F O保留字:2019冠状病毒病疫情电子健康和移动健康平台医疗物联网(IoMT)远程医疗和在线咨询无人驾驶自主系统(UAS)A B S T R A C T最新的5G技术正在引入物联网(IoT)时代。 该研究旨在关注5G技术和当前的医疗挑战,并强调可以在不同领域处理COVID-19问题的基于5G的解决方案。本文全面回顾了5G技术与其他数字技术(如人工智能和机器学习、物联网对象、大数据分析、云计算、机器人技术和其他数字平台)在新兴医疗保健应用中的集成。从文献中

def charlist(): li=[] for i in range('A','Z'+1): li.append(i) return li

这段代码有误,因为 `range()` 函数的第一个参数应该是整数类型而不是字符串类型,应该改为 `range(ord('A'), ord('Z')+1)`。同时,还需要将 `ord()` 函数得到的整数转化为字符类型,可以使用 `chr()` 函数来完成。修改后的代码如下: ``` def charlist(): li = [] for i in range(ord('A'), ord('Z')+1): li.append(chr(i)) return li ``` 这个函数的作用是返回一个包含大写字母 A 到 Z 的列表。

需求规格说明书1

1.引言1.1 编写目的评了么项目旨在提供一个在线评分系统,帮助助教提高作业评分效率,提供比现有方式更好的课堂答辩评审体验,同时减轻助教的工作量并降低助教工作复

人工免疫系统在先进制造系统中的应用

阵列15(2022)100238人工免疫系统在先进制造系统中的应用RuiPinto,Gil GonçalvesCNOEC-系统和技术研究中心,Rua Dr. Roberto Frias,s/n,office i219,4200-465,Porto,Portugal波尔图大学工程学院,Rua Dr. Roberto Frias,s/n 4200-465,Porto,PortugalA R T I C L E I N F O保留字:人工免疫系统自主计算先进制造系统A B S T R A C T近年来,先进制造技术(AMT)在工业过程中的应用代表着不同的先进制造系统(AMS)的引入,促使企业在面对日益增长的个性化产品定制需求时,提高核心竞争力,保持可持续发展。最近,AMT引发了一场新的互联网革命,被称为第四次工业革命。 考虑到人工智能的开发和部署,以实现智能和自我行为的工业系统,自主方法允许系统自我调整,消除了人为干预管理的需要。本文提出了一个系统的文献综述人工免疫系统(AIS)的方法来解决多个AMS问题,需要自治的