用python写一个求解最小斯坦纳树的代码
时间: 2023-12-14 19:38:02 浏览: 231
复杂网络的任意子节点间的网络最短距离的求解 最小斯坦纳树---python代码(含输入数据、绘图代码、解题代码、csv生成文件)
以下是使用Kruskal算法求解最小斯坦纳树的Python代码:
```python
from collections import defaultdict
class UnionFind:
def __init__(self, n):
self.parent = list(range(n))
self.rank = [0] * n
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
px, py = self.find(x), self.find(y)
if px == py:
return False
if self.rank[px] < self.rank[py]:
px, py = py, px
self.parent[py] = px
if self.rank[px] == self.rank[py]:
self.rank[px] += 1
return True
def min_spanning_tree(graph):
n = len(graph)
uf = UnionFind(n)
edges = []
for i in range(n):
for j in range(i + 1, n):
if graph[i][j] > 0:
edges.append((i, j, graph[i][j]))
edges.sort(key=lambda x: x[2])
tree = defaultdict(list)
for u, v, w in edges:
if uf.union(u, v):
tree[u].append((v, w))
tree[v].append((u, w))
return tree
def min_steiner_tree(n, terminals, edges):
# 取出所有的终端点
t = len(terminals)
if t == 1:
return {terminals[0]: []}
# 构造子图
subgraph = [[0] * t for _ in range(t)]
for i in range(t):
for j in range(i + 1, t):
if (terminals[i], terminals[j]) in edges:
subgraph[i][j] = subgraph[j][i] = edges[(terminals[i], terminals[j])]
# 求解子图的最小生成树
subtree = min_spanning_tree(subgraph)
# 构造最小斯坦纳树
steiner = defaultdict(list)
for u, v, w in edges:
if u in subtree and v in subtree[u]:
steiner[u].append((v, w))
steiner[v].append((u, w))
elif v in subtree and u in subtree[v]:
steiner[v].append((u, w))
steiner[u].append((v, w))
else:
for i in range(t):
if (u, terminals[i]) in subtree and (v, terminals[i]) in subtree:
steiner[terminals[i]].append((u, w + subtree[(u, terminals[i])]) if (u, terminals[i]) in subtree else (v, w + subtree[(v, terminals[i])]))
steiner[u].append((terminals[i], w + subtree[(u, terminals[i])]) if (u, terminals[i]) in subtree else (terminals[i], w + subtree[(v, terminals[i])]))
steiner[v].append((terminals[i], w + subtree[(v, terminals[i])]) if (v, terminals[i]) in subtree else (terminals[i], w + subtree[(u, terminals[i])]))
return steiner
# 示例代码
if __name__ == '__main__':
n = 5
terminals = [0, 2, 4]
edges = {
(0, 1): 3,
(0, 2): 1,
(1, 2): 1,
(1, 3): 2,
(2, 3): 8,
(2, 4): 1,
(3, 4): 2
}
steiner = min_steiner_tree(n, terminals, edges)
print(steiner)
```
其中,`min_spanning_tree`函数使用Kruskal算法求解最小生成树,`min_steiner_tree`函数则使用贪心算法构造最小斯坦纳树。
阅读全文