基于图像的苹果尺寸测量与坏果检测SVM代码

时间: 2023-06-14 13:07:22 浏览: 266
PDF

基于 HOG+SVM 图像分类识别系统的设计与实现代码大全.pdf

以下是基于图像的苹果尺寸测量与坏果检测的SVM代码示例: 首先,导入所需的库和模块: ```python import cv2 import numpy as np import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import train_test_split ``` 接下来,定义函数来提取苹果的特征: ```python def get_apple_features(img): # 转换为HSV色彩空间 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 提取苹果的颜色特征 lower_red = np.array([0, 70, 50]) upper_red = np.array([10, 255, 255]) mask1 = cv2.inRange(hsv, lower_red, upper_red) lower_red = np.array([170, 70, 50]) upper_red = np.array([180, 255, 255]) mask2 = cv2.inRange(hsv, lower_red, upper_red) mask = cv2.bitwise_or(mask1, mask2) # 提取苹果的形状特征 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(cnt) aspect_ratio = float(w) / h extent = cv2.contourArea(cnt) / (w * h) hull = cv2.convexHull(cnt) hull_area = cv2.contourArea(hull) solidity = float(cv2.contourArea(cnt)) / hull_area # 返回特征向量 return [cv2.countNonZero(mask), aspect_ratio, extent, solidity] ``` 然后,加载数据和标签: ```python # 加载数据和标签 data = [] labels = [] for i in range(1, 11): for j in range(1, 6): img = cv2.imread(f"apple{i}_{j}.jpg") features = get_apple_features(img) data.append(features) labels.append(i) ``` 接下来,将数据和标签分为训练集和测试集: ```python # 将数据和标签分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=0) ``` 然后,训练SVM分类器: ```python # 训练SVM分类器 clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X_train, y_train) ``` 最后,使用训练好的SVM分类器进行坏苹果检测: ```python # 使用训练好的SVM分类器进行坏苹果检测 img = cv2.imread("apple11.jpg") features = get_apple_features(img) label = clf.predict([features])[0] if label == 11: print("This apple is bad.") else: print(f"This apple is apple {label}.") ``` 请注意,此代码示例仅用于说明基于图像的苹果尺寸测量与坏果检测的SVM实现方法,实际应用中可能需要进行更多的优化和改进。
阅读全文

相关推荐

最新推荐

recommend-type

基于HOG特征与SVM算法的图像分类 .docx

综上所述,基于HOG特征和SVM算法的图像分类方法在路面裂缝检测中展示了高效和准确的性能,是计算机视觉技术在实际问题中应用的一个成功案例。通过不断优化和扩展,这种技术有望在未来的基础设施监控和安全评估中发挥...
recommend-type

【实战】基于OpenCv的SVM实现车牌检测与识别(二)

总结来说,基于OpenCV的SVM实现车牌检测与识别是一个综合性的计算机视觉任务,涵盖了图像预处理、特征提取、模型训练、分类预测以及字符识别等多个步骤。通过不断调整和优化,我们可以构建出一个高效且准确的车牌...
recommend-type

python实现基于SVM手写数字识别功能

主要为大家详细介绍了python实现基于SVM手写数字识别功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Python 使用Opencv实现目标检测与识别的示例代码

在计算机视觉领域,目标检测与识别是至关重要的技术,它能帮助系统自动定位并识别图像中的特定对象。本文将深入探讨如何使用Python结合OpenCV库实现这一功能,特别是在实际应用中,例如行人检测。 首先,我们需要...
recommend-type

基于CSP与SVM算法的警觉度脑电信号分类

标题中的“基于CSP与SVM算法的警觉度脑电信号分类”指的是利用脑电图(EEG)数据来区分驾驶者的警觉状态,即清醒和睡眠,以提高驾驶安全性。CSP(Common Spatial Pattern)是一种空间滤波技术,用于从多通道EEG信号...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。