基于图像的苹果尺寸测量与坏果检测SVM代码
时间: 2023-06-14 13:07:22 浏览: 266
基于 HOG+SVM 图像分类识别系统的设计与实现代码大全.pdf
以下是基于图像的苹果尺寸测量与坏果检测的SVM代码示例:
首先,导入所需的库和模块:
```python
import cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.model_selection import train_test_split
```
接下来,定义函数来提取苹果的特征:
```python
def get_apple_features(img):
# 转换为HSV色彩空间
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 提取苹果的颜色特征
lower_red = np.array([0, 70, 50])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array([170, 70, 50])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
mask = cv2.bitwise_or(mask1, mask2)
# 提取苹果的形状特征
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(cnt)
aspect_ratio = float(w) / h
extent = cv2.contourArea(cnt) / (w * h)
hull = cv2.convexHull(cnt)
hull_area = cv2.contourArea(hull)
solidity = float(cv2.contourArea(cnt)) / hull_area
# 返回特征向量
return [cv2.countNonZero(mask), aspect_ratio, extent, solidity]
```
然后,加载数据和标签:
```python
# 加载数据和标签
data = []
labels = []
for i in range(1, 11):
for j in range(1, 6):
img = cv2.imread(f"apple{i}_{j}.jpg")
features = get_apple_features(img)
data.append(features)
labels.append(i)
```
接下来,将数据和标签分为训练集和测试集:
```python
# 将数据和标签分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=0)
```
然后,训练SVM分类器:
```python
# 训练SVM分类器
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X_train, y_train)
```
最后,使用训练好的SVM分类器进行坏苹果检测:
```python
# 使用训练好的SVM分类器进行坏苹果检测
img = cv2.imread("apple11.jpg")
features = get_apple_features(img)
label = clf.predict([features])[0]
if label == 11:
print("This apple is bad.")
else:
print(f"This apple is apple {label}.")
```
请注意,此代码示例仅用于说明基于图像的苹果尺寸测量与坏果检测的SVM实现方法,实际应用中可能需要进行更多的优化和改进。
阅读全文