best_param = genetic_algorithm(x0, bounds)这段代码中x0 和 bounds 的 shape 不一致,如何使用使用 numpy 的 broadcast 函数来实现这一点
时间: 2023-06-07 09:06:55 浏览: 135
assert_param-转载.txt
这段代码可以使用numpy的broadcast函数来实现shape的自动匹配。具体实现如下:
在调用genetic_algorithm函数之前,对x0和bounds数组进行扩展,使得它们具有相同的shape。假设x0的shape为(10,),bounds的shape为(2, 10),我们可以利用broadcast函数将x0扩展为(1, 10),然后直接将bounds数组和x0数组进行运算即可,如下所示:
```python
import numpy as np
x0 = np.random.randn(10)
bounds = np.array([[-1, 1] for i in range(10)])
x0_ = np.expand_dims(x0, axis=0) # 扩展x0数组为(1,10)
bounds_ = bounds[np.newaxis, :] # 扩展bounds数组为(1,2,10)
x = x0_ + np.random.rand(100, 2, 10) * (bounds_[:, 1, :] - bounds_[:, 0, :]) # 进行数组运算
best_param = x[np.argmax(fitness_func(x))] # 计算best_param
```
在这个例子中,numpy的broadcast函数自动将x0数组扩展为(1,10)的形状,然后将bounds数组扩展为(1,2,10)的形状,两个数组的shape就变得一致了。之后,我们可以将扩展后的数组直接参与到运算中,避免了shape不一致的问题。
阅读全文