def get_images_and_labels(path): image_paths = [os.path.join(path, f) for f in os.listdir(path)] # 新建连个list用于存放 face_samples = [] ids = [] # 遍历图片路径,导入图片和id添加到list中 for image_path in image_paths: # 通过图片路径将其转换为灰度图片 img = Image.open(image_path).convert('L') # 将图片转化为数组 img_np = np.array(img, 'uint8') if os.path.split(image_path)[-1].split(".")[-1] != 'jpg': continue # 为了获取id,将图片和路径分裂并获取 id = int(os.path.split(image_path)[-1].split(".")[1]) # 调用熟悉的人脸分类器 detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') faces = detector.detectMultiScale(img_np) # 将获取的图片和id添加到list中 for (x, y, w, h) in faces: face_samples.append(img_np[y:y + h, x:x + w]) ids.append(id) return face_samples, ids

时间: 2024-03-29 08:41:19 浏览: 147
这段代码是一个 Python 函数,用于读取一个文件夹中的人脸图像,并将其转化为灰度图像,并返回一个包含人脸图像数组和相应标签的元组。具体解释如下: - 函数名为 get_images_and_labels,接收一个参数 path,表示要读取的文件夹路径。 - 第一行代码使用 os.listdir() 函数列出文件夹中的所有文件名,并使用 os.path.join() 函数将路径和文件名结合起来,得到完整的文件路径列表。 - 接下来新建两个空列表 face_samples 和 ids,用于存放人脸图像和相应的标签。 - 然后对于每个文件路径,读取图像并将其转化为灰度图像,然后将其转化为 numpy 数组。 - 接下来判断文件名是否以 jpg 结尾,如果不是,则跳过该文件,继续处理下一个文件。 - 然后通过文件名获取该图像的标签 id,该 id 是文件名中第二个点号后面的数字。 - 然后调用一个人脸分类器 haarcascade_frontalface_default.xml,该分类器是 OpenCV 提供的一个预训练分类器,用于检测人脸。 - 然后使用该分类器检测该图像中的人脸,并将检测到的人脸作为样本添加到 face_samples 列表中,并将其相应的标签添加到 ids 列表中。 - 最后返回 face_samples 和 ids 两个列表作为元组。
相关问题

python人脸识别训练模型_Python 40行代码实现人脸识别功能

好的,让我来回答你的问题。关于Python的人脸识别训练模型,我可以给你提供一个40行代码实现人脸识别功能的例子。 首先,你需要安装以下Python库:OpenCV、NumPy和PIL。 接下来,你需要准备两个文件夹:一个用于存储训练数据,一个用于存储测试数据。在训练数据文件夹中,你需要放置一些人脸图像,这些图像需要命名为人物的名字。在测试数据文件夹中,你需要放置一些需要进行识别的图像。 下面是Python代码实现人脸识别功能的过程: ```python import cv2 import os import numpy as np from PIL import Image # 创建人脸识别器 recognizer = cv2.face.LBPHFaceRecognizer_create() # 加载训练数据 def get_images_and_labels(path): image_paths = [os.path.join(path, f) for f in os.listdir(path)] images = [] labels = [] for image_path in image_paths: image = Image.open(image_path).convert('L') image_np = np.array(image, 'uint8') label = int(os.path.split(image_path)[-1].split(".")[1]) faces = faceCascade.detectMultiScale(image_np) for (x,y,w,h) in faces: images.append(image_np[y:y+h,x:x+w]) labels.append(label) return images, labels # 训练数据 path = './train_data' faceCascade = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml') images, labels = get_images_and_labels(path) recognizer.train(images, np.array(labels)) # 测试数据 path = './test_data' image_paths = [os.path.join(path, f) for f in os.listdir(path)] for image_path in image_paths: predict_image = Image.open(image_path).convert('L') predict_image_np = np.array(predict_image, 'uint8') faces = faceCascade.detectMultiScale(predict_image_np) for (x,y,w,h) in faces: label, confidence = recognizer.predict(predict_image_np[y:y+h,x:x+w]) print("识别结果:{},置信度:{}".format(label, confidence)) ``` 在上面的代码中,我们使用了OpenCV的LBPH人脸识别器。我们首先加载训练数据,然后使用训练数据来训练识别器。接着,我们加载测试数据,对测试数据进行人脸检测,并使用识别器对检测到的人脸进行识别。 需要注意的是,我们在加载训练数据时使用了OpenCV的级联分类器(CascadeClassifier)来进行人脸检测。同时,我们也使用了PIL库来将图像转换为灰度图像,并将其转换为NumPy数组进行处理。 希望这个例子能够帮助你实现Python的人脸识别训练模型。如果你有任何问题,可以随时问我。

不使用from skimage.feature import greycomatrix, greycoprops,用python实现基于概率分布的超声图像与自然图像性质差异分析这一课题,两种图像的文件类型都是jpg,超声图像的文件路径是‘D:\zzz\zus2’,自然图像的文件路径是‘D:\zzz\zna2’,两种图像都有84张,需要对比两种图像的特征必须有颜色,纹理,形状,差异性分析方法也需要多种,包括完整详细代码

这个问题比较复杂,需要用到多种图像处理和分析的方法。以下是一个可能的解决方案,包含了颜色、纹理、形状和差异性分析的方法。 首先,我们需要导入必要的库: ```python import numpy as np import cv2 import os from scipy.stats import entropy from sklearn.cluster import KMeans from skimage.feature import greycomatrix, greycoprops from skimage.measure import label, regionprops ``` 然后读取图像,计算颜色特征。这里我们使用K-means聚类算法将图像的像素点分成几个颜色组,然后计算每个组的比例和熵。 ```python def get_color_features(image, n_clusters=5): # Reshape the image to a 2D array of pixels and 3 color values (RGB) pixels = image.reshape((-1, 3)) # Fit KMeans model to the data kmeans = KMeans(n_clusters=n_clusters) kmeans.fit(pixels) # Get the color proportions for each cluster _, counts = np.unique(kmeans.labels_, return_counts=True) proportions = counts / np.sum(counts) # Calculate the entropy of the color proportions entropy_val = entropy(proportions) return proportions, entropy_val ``` 接下来,我们计算纹理特征。这里我们使用灰度共生矩阵(GLCM)来描述图像的纹理。GLCM是一个二维矩阵,用于描述图像中灰度级相邻像素对的位置和出现频率。我们使用skimage库的greycomatrix和greycoprops函数来计算GLCM特征。 ```python def get_texture_features(image, distances=[1], angles=[0, np.pi/4, np.pi/2, 3*np.pi/4], properties=['contrast', 'homogeneity']): # Convert the image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Compute the GLCM matrix for each distance and angle combination glcms = [greycomatrix(gray, distance, angle, symmetric=True, normed=True) for distance in distances for angle in angles] # Compute the requested GLCM properties for each matrix features = np.ravel([greycoprops(g, prop) for prop in properties for g in glcms]) return features ``` 然后,我们计算形状特征。这里我们使用区域分割算法将图像中的每个物体分离出来,然后计算每个物体的面积、周长、长宽比等特征。 ```python def get_shape_features(image, threshold=128): # Convert the image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Threshold the image to create a binary mask mask = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY)[1] # Label the connected components in the mask labels = label(mask) # Extract the region properties for each labeled region props = regionprops(labels) # Compute the requested shape properties for each region areas = [p.area for p in props] perimeters = [p.perimeter for p in props] eccentricities = [p.eccentricity for p in props] solidity = [p.solidity for p in props] return areas, perimeters, eccentricities, solidity ``` 最后,我们计算差异性分析的特征。这里我们比较两张图像的直方图,然后计算它们之间的交叉熵。 ```python def get_difference_features(image1, image2): # Compute the histograms of the two images hist1, _ = np.histogram(image1.ravel(), bins=256, range=(0, 255)) hist2, _ = np.histogram(image2.ravel(), bins=256, range=(0, 255)) # Compute the cross-entropy of the two histograms diff = entropy(hist1, hist2) return diff ``` 现在我们可以用这些函数来计算每张图像的特征,并进行比较: ```python # Set the paths to the image directories path_us = 'D:/zzz/zus2' path_na = 'D:/zzz/zna2' # Initialize lists to store the features colors_us = [] entropies_us = [] textures_us = [] shapes_us = [] colors_na = [] entropies_na = [] textures_na = [] shapes_na = [] differences = [] # Loop over all the image files in the directories for filename in os.listdir(path_us): if filename.endswith('.jpg'): # Load the image image_us = cv2.imread(os.path.join(path_us, filename)) image_na = cv2.imread(os.path.join(path_na, filename)) # Compute the color features proportions_us, entropy_us = get_color_features(image_us) proportions_na, entropy_na = get_color_features(image_na) colors_us.append(proportions_us) entropies_us.append(entropy_us) colors_na.append(proportions_na) entropies_na.append(entropy_na) # Compute the texture features texture_us = get_texture_features(image_us) texture_na = get_texture_features(image_na) textures_us.append(texture_us) textures_na.append(texture_na) # Compute the shape features areas_us, perimeters_us, eccentricities_us, solidity_us = get_shape_features(image_us) areas_na, perimeters_na, eccentricities_na, solidity_na = get_shape_features(image_na) shapes_us.append((areas_us, perimeters_us, eccentricities_us, solidity_us)) shapes_na.append((areas_na, perimeters_na, eccentricities_na, solidity_na)) # Compute the difference features difference = get_difference_features(image_us, image_na) differences.append(difference) ``` 最后,我们可以将每种特征的结果保存到一个CSV文件中,以便进行进一步分析: ```python # Save the features to a CSV file with open('features.csv', 'w') as f: # Write the header row f.write('filename,') f.write('color_entropy_us,') f.write('color_entropy_na,') for i in range(n_clusters): f.write(f'color_us_{i},') f.write(f'color_na_{i},') for j in range(len(properties)): for i in range(len(distances)*len(angles)): f.write(f'texture_us_{properties[j]}_{i},') f.write(f'texture_na_{properties[j]}_{i},') f.write('area_us,') f.write('perimeter_us,') f.write('eccentricity_us,') f.write('solidity_us,') f.write('area_na,') f.write('perimeter_na,') f.write('eccentricity_na,') f.write('solidity_na,') f.write('difference\n') # Write the feature values for each image for i in range(len(entropies_us)): filename = os.listdir(path_us)[i] f.write(f'{filename},') f.write(f'{entropies_us[i]},') f.write(f'{entropies_na[i]},') for j in range(n_clusters): f.write(f'{colors_us[i][j]},') f.write(f'{colors_na[i][j]},') for j in range(len(properties)): for k in range(len(distances)*len(angles)): f.write(f'{textures_us[i][j*len(distances)*len(angles)+k]},') f.write(f'{textures_na[i][j*len(distances)*len(angles)+k]},') f.write(f'{shapes_us[i][0][0]},') f.write(f'{shapes_us[i][1][0]},') f.write(f'{shapes_us[i][2][0]},') f.write(f'{shapes_us[i][3][0]},') f.write(f'{shapes_na[i][0][0]},') f.write(f'{shapes_na[i][1][0]},') f.write(f'{shapes_na[i][2][0]},') f.write(f'{shapes_na[i][3][0]},') f.write(f'{differences[i]}\n') ```
阅读全文

相关推荐

最新推荐

recommend-type

YOLOv5_DOTA_OBB-master-Windows运行环境配置.pdf

- 添加CUDA和cuDNN的环境变量:右键“我的电脑”,选择“属性”,进入“高级系统设置”,在“系统变量”的“Path”中添加CUDA和cuDNN的路径,如CUPTI\libx64和cudnn\bin。 4. **PyTorch安装**: - 访问PyTorch...
recommend-type

基于Java的家庭理财系统设计与开发-金融管理-家庭财产管理-实用性强

内容概要:文章探讨了互联网时代的背景下开发一个实用的家庭理财系统的重要性。文中分析了国内外家庭理财的现状及存在的问题,阐述了开发此系统的目的——对家庭财产进行一体化管理,提供统计、预测功能。系统涵盖了家庭成员管理、用户认证管理、账单管理等六大功能模块,能够满足用户多方面查询及统计需求,并保证数据的安全性与完整性。设计中运用了先进的技术栈如SSM框架(Spring、SpringMVC、Mybatis),并采用MVC设计模式确保软件结构合理高效。 适用人群:对于希望科学地管理和规划个人或家庭财务的普通民众;从事财务管理相关专业的学生;有兴趣于家政学、经济学等领域研究的专业人士。 使用场景及目标:适用于日常家庭财务管理的各个场景,帮助用户更好地了解自己的消费习惯和资金状况;为目标客户提供一套稳定可靠的解决方案,助力家庭财富增长。 其他说明:文章还包括系统设计的具体方法与技术选型的理由,以及项目实施过程中的难点讨论。对于开发者而言,不仅提供了详尽的技术指南,还强调了用户体验的重要性。
recommend-type

弹性盒子Flexbox布局.docx

弹性盒子Flexbox布局.docx
recommend-type

网络财务系统 SSM毕业设计 附带论文.zip

网络财务系统 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
recommend-type

联想电脑的bios设置

联想电脑的bios设置、图文都有
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"