def get_geometry(self, intrinsics, extrinsics): """Calculate the (x, y, z) 3D position of the features. """ rotation, translation = extrinsics[..., :3, :3], extrinsics[..., :3, 3] B, N, _ = translation.shape # Add batch, camera dimension, and a dummy dimension at the end points = self.frustum.unsqueeze(0).unsqueeze(0).unsqueeze(-1) # Camera to ego reference frame points = torch.cat((points[:, :, :, :, :, :2] * points[:, :, :, :, :, 2:3], points[:, :, :, :, :, 2:3]), 5) combined_transformation = rotation.matmul(torch.inverse(intrinsics)) points = combined_transformation.view(B, N, 1, 1, 1, 3, 3).matmul(points).squeeze(-1) points += translation.view(B, N, 1, 1, 1, 3) # The 3 dimensions in the ego reference frame are: (forward, sides, height) return points这段代码的意思是什么?
时间: 2024-04-02 18:35:39 浏览: 58
这段代码是一个用于将二维图像特征点映射到三维空间中的函数。它接收相机内参和外参作为输入,并返回每个特征点的三维坐标。
在函数中,首先从外参中提取旋转和平移矩阵。然后将输入的二维特征点扩展成一个四维张量,其中第一维是batch size,第二维是相机数量,第三维是特征点数量,第四维是x、y和一个占位的维度。
接下来,通过一系列的数学运算将特征点从相机坐标系转换到自车坐标系。这里的转换包括以下几个步骤:
1. 将二维特征点的前两个维度(x和y)乘以深度(z)并将其放在新的第三个维度中,这样就得到了三维特征点的相机坐标。
2. 将相机坐标转换为自车参考系下的坐标。这里使用了相机内参矩阵和旋转矩阵进行计算。
3. 将平移矩阵加到每个特征点的位置上,以获得相对于自车坐标系的绝对位置。
最后,返回每个特征点的三维坐标。
相关问题
def get_geometry(self, intrinsics, extrinsics): """Calculate the (x, y, z) 3D position of the features. """ rotation, translation = extrinsics[..., :3, :3], extrinsics[..., :3, 3]为什么取3?
这里取3是因为extrinsics是一个4x4的矩阵,其中前3x3部分表示旋转矩阵,后3部分表示平移向量。extrinsics[..., :3, :3]即取extrinsics矩阵中第1~3行、第1~3列的元素,即旋转矩阵部分。extrinsics[..., :3, 3]即取extrinsics矩阵中第4列的前3个元素,即平移向量部分。
阅读全文