import pandas as pd from sklearn.neighbors import KNeighborsRegressor # 从Excel文件中读取数据 filename = 'D://数据3.xlsx', sheet_name='0012' df = pd.read_excel(filename) train_data = df.iloc[:, :-1] train_target = df.iloc[:, -1] # 假设当前数据为 current_data current_data = [1, 2, 3, 4, 5] # 训练模型 k = 5 # 设置K值 knn = KNeighborsRegressor(n_neighbors=k) knn.fit(train_data, train_target) # 预测当前数据 similar_data_indices = knn.kneighbors([current_data], return_distance=False) similar_data = train_data.iloc[similar_data_indices[0]] prediction = knn.predict(similar_data).mean() print("预测值为:", prediction)这个错误怎么改?
时间: 2024-01-14 18:02:39 浏览: 87
根据您提供的代码和错误信息,我猜测您遇到的错误可能是由于Excel文件中的数据格式不正确。具体来说,可能是由于Excel文件中的某些数据包含了非数字字符,导致在读取数据时出现了错误。
为了解决这个问题,您可以尝试将Excel文件中的所有数据都转换成数字类型。具体来说,您可以使用pandas库中的to_numeric函数将所有数据转换成数字类型。例如,您可以在读取Excel文件时,加入如下代码:
```python
df = pd.read_excel(filename, sheet_name='0012')
df = df.apply(pd.to_numeric, errors='coerce')
```
这个代码会将Excel文件中的所有数据都尝试转换成数字类型。对于那些无法转换成数字的数据,会被转换成NaN。然后,您可以使用dropna函数将所有包含NaN值的行删除,确保数据中只包含数字类型的数据:
```python
df = df.dropna()
```
这样,您就可以确保从Excel文件中读取到的数据都是数字类型的了,避免了后续使用KNN模型时出现的错误。
阅读全文