编写一段pytorch程序,定义一个稀疏堆叠自编码器SSAE,将带有时间列的多特征的数据集training_set.csv、test_set.csv和pred_set.csv加载到SSAE中,将数据集转换为pytorch张量,对数据进行特征提取和归一化、标准化以后,将处理好的数据对应放入new_training_set、new_test_set和new_pred_set三个文件夹中,最后一列是标签列
时间: 2024-03-11 14:43:40 浏览: 86
好的,以下是使用PyTorch编写稀疏堆叠自编码器SSAE的代码,可以将带有时间列的多特征数据集进行特征提取和归一化、标准化处理,将处理好的数据保存到new_training_set、new_test_set和new_pred_set中:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# 定义稀疏堆叠自编码器SSAE模型
class SSAE(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(SSAE, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim),
nn.Sigmoid(),
)
self.decoder = nn.Sequential(
nn.Linear(output_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim),
nn.Sigmoid(),
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return encoded, decoded
# 加载数据集
train_data = pd.read_csv("training_set.csv")
test_data = pd.read_csv("test_set.csv")
pred_data = pd.read_csv("pred_set.csv")
# 将数据集转换为PyTorch张量
train_tensor = torch.tensor(train_data.values.astype(float))
test_tensor = torch.tensor(test_data.values.astype(float))
pred_tensor = torch.tensor(pred_data.values.astype(float))
# 特征提取和归一化、标准化
scaler = StandardScaler()
train_tensor[:, :-1] = torch.tensor(scaler.fit_transform(train_tensor[:, :-1]))
test_tensor[:, :-1] = torch.tensor(scaler.transform(test_tensor[:, :-1]))
pred_tensor = torch.tensor(scaler.transform(pred_tensor))
# 训练模型
input_dim = train_tensor.shape[1] - 1
hidden_dim = 10
output_dim = 5
model = SSAE(input_dim, hidden_dim, output_dim)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
num_epochs = 100
batch_size = 16
for epoch in range(num_epochs):
running_loss = 0.0
for i in range(0, len(train_tensor), batch_size):
batch_data = train_tensor[i:i+batch_size, :-1]
batch_label = train_tensor[i:i+batch_size, -1]
optimizer.zero_grad()
encoded, decoded = model(batch_data)
loss = criterion(decoded, batch_data)
loss.backward()
optimizer.step()
running_loss += loss.item() * batch_data.shape[0]
print(f"Epoch {epoch+1} loss: {running_loss / len(train_tensor)}")
# 对数据进行编码
train_encoded, _ = model(torch.tensor(train_data.values.astype(float))[:, :-1])
test_encoded, _ = model(torch.tensor(test_data.values.astype(float))[:, :-1])
pred_encoded, _ = model(torch.tensor(pred_data.values.astype(float))[:, :-1])
# 将数据保存到new_training_set、new_test_set和new_pred_set中
train_encoded = pd.concat([pd.DataFrame(train_encoded.detach().numpy()), train_data.iloc[:, -1]], axis=1)
test_encoded = pd.concat([pd.DataFrame(test_encoded.detach().numpy()), test_data.iloc[:, -1]], axis=1)
pred_encoded = pd.DataFrame(pred_encoded.detach().numpy())
train_encoded.to_csv("new_training_set.csv", index=False)
test_encoded.to_csv("new_test_set.csv", index=False)
pred_encoded.to_csv("new_pred_set.csv", index=False)
```
以上代码可以将训练集、测试集和预测集中的数据进行特征提取和归一化、标准化处理,并使用稀疏堆叠自编码器SSAE模型对数据进行编码,最后将处理好的数据保存到new_training_set、new_test_set和new_pred_set三个文件夹中。
阅读全文