hfe-7000的沸腾udf
时间: 2023-09-23 07:12:11 浏览: 171
以下是一个考虑HFE-7000沸腾的UDF,可以用于计算在不同的流量、热通量和液体温度条件下,HFE-7000在管内的沸腾热传输系数:
```
FUNCTION HFE7000_Boiling_HT_Coefficient (Mass_Flow_Rate: REAL; Heat_Flux: REAL; Liquid_Temperature: REAL): REAL;
{计算HFE-7000在管内的沸腾热传输系数}
CONST
Diameter = 0.01; {管道直径}
Gravity = 9.81; {重力加速度}
Surface_Tension = 0.012; {表面张力}
Vaporization_Heat = 200; {汽化热}
Liquid_Density = 1000; {液体密度}
Liquid_Specific_Heat = 2000; {液体比热容}
Liquid_Thermal_Conductivity = 0.6; {液体热导率}
Vapor_Density = 0.5; {汽体密度}
Vapor_Specific_Heat = 1000; {汽体比热容}
Vapor_Thermal_Conductivity = 0.03; {汽体热导率}
VAR
Boiling_HT_Coefficient: REAL; {沸腾热传输系数}
Reynolds_Number: REAL; {雷诺数}
Prandtl_Number: REAL; {普朗特数}
Liquid_Velocity: REAL; {液体速度}
Heat_Flux_Density: REAL; {热通量密度}
Heat_Transfer_Coefficient: REAL; {传热系数}
Nusselt_Number: REAL; {努塞尔数}
Heat_Transfer_Area: REAL; {传热面积}
Vapor_Velocity: REAL; {汽体速度}
BEGIN
Liquid_Velocity := Mass_Flow_Rate / (Pi * Diameter * Diameter * 4 * Liquid_Density);
Heat_Flux_Density := Heat_Flux / (Pi * Diameter * Diameter);
Reynolds_Number := Liquid_Density * Diameter * Liquid_Velocity / Liquid_Thermal_Conductivity;
Prandtl_Number := Liquid_Specific_Heat * Liquid_Thermal_Conductivity / Liquid_Viscosity;
Nusselt_Number := 0.023 * Power(Reynolds_Number, 0.8) * Power(Prandtl_Number, 0.4);
Heat_Transfer_Area := Pi * Diameter * Diameter * 4;
Heat_Transfer_Coefficient := Nusselt_Number * Liquid_Thermal_Conductivity / Diameter;
Vapor_Velocity := Mass_Flow_Rate / (Pi * Diameter * Diameter * 4 * Vapor_Density);
Boiling_HT_Coefficient := Heat_Transfer_Coefficient * Power(Surface_Tension / (Gravity * Vaporization_Heat), 0.5) * Power(Vapor_Velocity / Liquid_Velocity, 0.5);
HFE7000_Boiling_HT_Coefficient := Boiling_HT_Coefficient;
END;
```
在这个UDF中,我们假设HFE-7000是均匀的单相流体,并考虑了沸腾传热的影响。我们使用Reynolds和Prandtl数来计算努塞尔数,然后使用努塞尔数、管道直径和液体热导率来计算传热系数。然后,我们使用汽体速度和液体速度的比值以及表面张力和汽化热来计算沸腾热传输系数。
需要注意的是,这只是一个简单的例子,实际的HFE-7000沸腾计算可能需要考虑更多的因素,例如管道几何形状、管壁材料、表面形态等等。
阅读全文