给定一个有权重的全连接的图 使用KNN构建带权重的超图 python代码
时间: 2024-04-07 11:33:21 浏览: 144
如果你有一个有权重的全连接图,并希望使用KNN构建带权重的超图,你可以使用Python中的scikit-learn库来实现。下面是一个示例代码:
```python
from sklearn.neighbors import NearestNeighbors
import numpy as np
# 创建一个有权重的全连接图的权重矩阵
weights_matrix = np.array([[0, 0.5, 0.8, 0.3],
[0.5, 0, 0.6, 0.1],
[0.8, 0.6, 0, 0.9],
[0.3, 0.1, 0.9, 0]])
# 创建KNN模型
k = 2
knn = NearestNeighbors(n_neighbors=k)
# 拟合KNN模型
knn.fit(weights_matrix)
# 查询每个节点的k个最近邻节点
query_node = 0
dist, indices = knn.kneighbors([weights_matrix[query_node]])
print("Node", query_node)
for i in range(k):
print("Nearest neighbor:", indices[0][i], "Distance:", dist[0][i])
```
在这个示例代码中,我们首先创建了一个有权重的全连接图的权重矩阵 `weights_matrix`。然后,我们使用 `NearestNeighbors` 类来拟合KNN模型,并传入权重矩阵作为输入。最后,我们查询给定节点的k个最近邻节点,并打印出结果。
请注意,这只是一个示例代码,实际中你可能需要根据你的数据和需求进行适当的修改。希望对你有所帮助!
阅读全文