c语言结构体初始化方法

时间: 2023-04-03 10:04:02 浏览: 77
结构体可以通过以下方式进行初始化: 1. 逐个成员初始化 struct Person { char name[20]; int age; }; struct Person p = {"Tom", 20}; 2. 使用指定成员初始化 struct Person { char name[20]; int age; }; struct Person p = {.name = "Tom", .age = 20}; 3. 使用匿名结构体初始化 struct { char name[20]; int age; } p = {"Tom", 20};
相关问题

c语言结构体初始化的四种方法

C语言结构体初始化有以下四种方法: 1. 按顺序初始化:按照结构体定义中的成员顺序依次给每个成员赋值。 例如: ```c struct Student { int id; char name[20]; int age; }; int main() { struct Student s = {1, "Tom", 18}; return 0; } ``` 2. 指定成员初始化:通过成员名字指定对应的值进行初始化。 例如: ```c struct Student { int id; char name[20]; int age; }; int main() { struct Student s = {.id=1, .name="Tom", .age=18}; return 0; } ``` 3. 省略成员初始化:如果在初始化时只给部分成员赋值,其他未赋值的成员会被自动初始化为0或者空。 例如: ```c struct Student { int id; char name[20]; int age; }; int main() { struct Student s = {.id=1}; return 0; } ``` 4. 嵌套结构体初始化:如果结构体中的成员是其他结构体类型,可以使用以上任何一种方式初始化嵌套结构体。 例如: ```c struct Address { char city[20]; char street[20]; }; struct Student { int id; char name[20]; int age; struct Address address; }; int main() { struct Student s = {.id=1, .name="Tom", .age=18, .address={.city="Beijing", .street="Main Street"}}; return 0; } ``` 以上是C语言结构体初始化的四种常用方法。

c语言 结构体初始化

结构体是一种用户自定义的数据类型,在C语言中,我们可以使用结构体来对多个不同类型的数据进行组合。结构体变量的初始化可以分为两种方式:静态初始化和动态初始化。 静态初始化是在定义结构体变量时就给其成员变量赋初值的方式。例如: ``` struct Person { char name[20]; int age; }; struct Person person = {"Tom", 20}; ``` 在这个例子中,我们定义了一个名为Person的结构体,包含了一个char类型的name成员和一个int类型的age成员。然后,我们定义了一个person结构体变量,使用了静态初始化的方式,并给name和age成员赋予了初始值。 动态初始化是在定义结构体变量后,通过成员运算符"."来给其成员变量赋值的方式。例如: ``` struct Student{ char name[20]; int age; }; struct Student student; strcpy(student.name, "John"); student.age = 18; ``` 在这个例子中,我们定义了一个名为Student的结构体,并定义了一个名为student的结构体变量。然后,使用strcpy函数将字符串"John"赋值给student的name成员,使用赋值运算符将数字18赋值给student的age成员。 需要注意的是,结构体变量的成员变量可以通过"."来访问和赋值。另外,结构体变量的初始化可以在定义时进行,也可以在定义后进行。在初始化时,可以使用静态初始化或动态初始化的方式,根据具体情况选择合适的方式。 以上是关于C语言结构体初始化的回答,希望能对你有所帮助。

相关推荐

在C语言中,结构体的初始化可以通过几种方式进行。 第一种方式是顺序初始化,即按照结构体定义的顺序给成员变量赋值。例如,定义了一个名为serial的结构体类型serial_hard_config_def,可以通过以下方式进行初始化: serial_hard_config_def serial = { 115200, 8, 1, 0, 0 }; \[1\] 第二种方式是定义时赋值,即在定义结构体变量的同时给成员变量赋值。例如,定义了一个名为test的结构体类型InitMember,可以通过以下方式进行初始化: struct InitMember test = {-10,3.141590,"method one",0.25}; \[2\] 如果要声明结构体数组,可以采用表驱动型写法,结合枚举类型来定义。例如,定义了一个名为block的结构体类型,以及一个名为motor的结构体数组,可以通过以下方式进行初始化: typedef struct block { char name\[32\]; int type; int size; }block; enum{ ENUM_NAME, ENUM_TYPE, ENUM_SIZE, ENUM_MAX }; const block motor\[ENUM_MAX\] = { \[ENUM_NAME\] = { .name = "version", .type = 1, .size = 32 }, \[ENUM_TYPE\] = { .name = "device", .type = 2, .size = 16 }, \[ENUM_SIZE\] = { .name = "firmware", .type = 3, .size = 8 }, }; \[3\] 总结起来,在嵌入式开发中,推荐使用方法3对结构体进行初始化。而对于结构体数组,可以采用方法3结合枚举类型的方式进行初始化,这在大型项目中比较常见。 #### 引用[.reference_title] - *1* [C语言结构体初始化的几种方法](https://blog.csdn.net/u011029104/article/details/124611971)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [C语言结构体初始化的四种方法](https://blog.csdn.net/wwwguojiang/article/details/109201961)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [结构体初始化的四种方法](https://blog.csdn.net/fly_wt/article/details/121434848)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
回答: 在C语言中,可以通过以下方式初始化结构体数组: 1. 逐个初始化每个结构体元素: Test_Data arr\[3\] = { {"MerchantID1", "MobileToken1"}, {"MerchantID2", "MobileToken2"}, {"MerchantID3", "MobileToken3"} }; 这样就创建了一个包含3个Test_Data结构体的数组,每个结构体都有MerchantID和MobileToken字段。 2. 使用数组初始化器初始化整个结构体数组: Test_Data arr\[\] = { {"MerchantID1", "MobileToken1"}, {"MerchantID2", "MobileToken2"}, {"MerchantID3", "MobileToken3"} }; 这种方式可以根据初始化的元素个数自动确定数组的大小。 引用\[1\]中的代码片段展示了一个测试函数testStructInit,该函数初始化了一个Test_Data结构体变量struData,并打印出其内存中的值。在这个例子中,struData的第一个元素被初始化为1,其他元素没有显式初始化,因此它们的值是未定义的。 引用\[2\]中提到了另一种初始化方式,即使用双重花括号{{}}来初始化结构体数组的第一个元素。例如,Test_Data struData = {{1}}; 这样做会将第一个元素的第一个字段初始化为1,其他字段的值将是未定义的。 引用\[3\]中的代码片段展示了一个结构体数组的定义,其中每个元素包含一个status_code字段和一个fn_process字段。如果需要在映射表中添加参数,可以在结构体中添加一个void指针类型的param字段,并在初始化时为其赋值。例如,status_code_process_map arr\[\] = {{200, param1, fn_process1}, {404, param2, fn_process2}}; 这样就为每个元素的param字段赋予了不同的值。 总结起来,C语言中可以通过逐个初始化或使用数组初始化器来初始化结构体数组。如果需要在结构体中添加参数,可以在结构体定义中添加相应的字段,并在初始化时为其赋值。 #### 引用[.reference_title] - *1* *2* [C语言--数组/结构体初始化](https://blog.csdn.net/freudlv/article/details/106798071)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [整理C语言结构体数组初始化](https://blog.csdn.net/renyongjian1994/article/details/117198867)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

最新推荐

安装系统.zip

安装系统.zip

opencv4.3.0-cache.zip

这个是windows上源码编译opencv4.3.0+opencv-contrib4.3.0时候cmake时候缓存文件,只需要将压缩文件夹解压到opencv源码目录下面即可,cmake-gui上configure时候就不会报错,注意解压后文件夹名字是.cache,文件夹名字不能改变,比如opencv/.cache,有的人解压后成opencv/.cache/.cache是错误的,请仔细检查文件夹名字和是否嵌套情况。这样就能保证cmake成功,最后点击generate即可生成opencv的C++项目接着编译即可。注意这个缓存文件并不适用linux系统,因为里面都是dll文件,只有一部分是和linux一样的比如boostdesc、vgg和一些模型文件

HR人才体系总结-20230920

HR人才体系总结-20230920

详细介绍了Intel DPTF技术

详细介绍了Intel DPTF技术。 笔记本开发中必须掌握的技术 thermal 及 功耗控制技术

java新手练习的项目

java新手练习的项目

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

特邀编辑特刊:安全可信计算

10特刊客座编辑安全和可信任计算0OZGUR SINANOGLU,阿布扎比纽约大学,阿联酋 RAMESHKARRI,纽约大学,纽约0人们越来越关注支撑现代社会所有信息系统的硬件的可信任性和可靠性。对于包括金融、医疗、交通和能源在内的所有关键基础设施,可信任和可靠的半导体供应链、硬件组件和平台至关重要。传统上,保护所有关键基础设施的信息系统,特别是确保信息的真实性、完整性和机密性,是使用在被认为是可信任和可靠的硬件平台上运行的软件实现的安全协议。0然而,这一假设不再成立;越来越多的攻击是0有关硬件可信任根的报告正在https://isis.poly.edu/esc/2014/index.html上进行。自2008年以来,纽约大学一直组织年度嵌入式安全挑战赛(ESC)以展示基于硬件的攻击对信息系统的容易性和可行性。作为这一年度活动的一部分,ESC2014要求硬件安全和新兴技术�

ax1 = fig.add_subplot(221, projection='3d')如何更改画布的大小

### 回答1: 可以使用`fig.set_size_inches()`方法来更改画布大小。例如,如果想要将画布大小更改为宽8英寸,高6英寸,可以使用以下代码: ``` fig.set_size_inches(8, 6) ``` 请注意,此方法必须在绘图之前调用。完整代码示例: ``` import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() fig.set_size_inches(8, 6) ax1 = fig.add_subplot(221, project

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

特邀编辑导言:片上学习的硬件与算法

300主编介绍:芯片上学习的硬件和算法0YU CAO,亚利桑那州立大学XINLI,卡内基梅隆大学TAEMINKIM,英特尔SUYOG GUPTA,谷歌0近年来,机器学习和神经计算算法取得了重大进展,在各种任务中实现了接近甚至优于人类水平的准确率,如基于图像的搜索、多类别分类和场景分析。然而,大多数方法在很大程度上依赖于大型数据集的可用性和耗时的离线训练以生成准确的模型,这在许多处理大规模和流式数据的应用中是主要限制因素,如工业互联网、自动驾驶车辆和个性化医疗分析。此外,这些智能算法的计算复杂性仍然对最先进的计算平台构成挑战,特别是当所需的应用受到功耗低、吞吐量高、延迟小等要求的严格限制时。由于高容量、高维度和高速度数据,最近传感器技术的进步进一步加剧了这种情况。0在严格的条件下支持芯片上学习和分类的挑战0性�