遗传算法gep matlab代码
时间: 2023-09-19 15:08:04 浏览: 178
以下是一个使用MATLAB实现基础遗传表达式编程(GEP)算法的示例代码:
```
function [best_fit,best_expr]=gep(fitness_func,pop_size,num_generations,head_length,num_genes,mutation_rate,crossover_rate,alphabet)
% 初始化种群
pop=init_pop(pop_size,head_length,num_genes,alphabet);
for i=1:num_generations
% 计算适应度
fitness=fitness_func(pop);
% 计算选择概率
prob=fitness./sum(fitness);
% 选择
new_pop=selection(pop,prob);
% 变异
new_pop=mutation(new_pop,mutation_rate,alphabet);
% 交叉
new_pop=crossover(new_pop,crossover_rate);
% 更新种群
pop=new_pop;
end
% 计算最佳个体
[best_fit,idx]=max(fitness);
best_expr=pop(idx,:);
end
% 初始化种群
function pop=init_pop(pop_size,head_length,num_genes,alphabet)
pop=zeros(pop_size,head_length*num_genes);
for i=1:pop_size
for j=1:head_length
pop(i,(j-1)*num_genes+1:j*num_genes)=alphabet(randi(length(alphabet),1,num_genes));
end
end
end
% 计算适应度
function fitness=fitness_func(pop)
fitness=zeros(size(pop,1),1);
for i=1:size(pop,1)
% 将表达式转换为MATLAB表达式
expr=gep_to_matlab(pop(i,:));
try
% 计算表达式结果
fitness(i)=eval(expr);
catch
% 如果表达式无效,则适应度为0
fitness(i)=0;
end
end
end
% 选择
function new_pop=selection(pop,prob)
new_pop=zeros(size(pop));
for i=1:size(pop,1)
% 通过轮盘赌选择个体
idx=find(rand<=cumsum(prob),1);
new_pop(i,:)=pop(idx,:);
end
end
% 变异
function new_pop=mutation(pop,mutation_rate,alphabet)
new_pop=zeros(size(pop));
for i=1:size(pop,1)
for j=1:size(pop,2)
% 按照变异率随机替换基因
if rand<=mutation_rate
new_pop(i,j)=alphabet(randi(length(alphabet)));
else
new_pop(i,j)=pop(i,j);
end
end
end
end
% 交叉
function new_pop=crossover(pop,crossover_rate)
new_pop=zeros(size(pop));
for i=1:2:size(pop,1)
% 按照交叉率随机选择两个个体进行交叉
if rand<=crossover_rate
p1=pop(i,:);
p2=pop(i+1,:);
% 随机选择交叉点
crossover_point=randi(size(pop,2));
new_pop(i,:)=[p1(1:crossover_point) p2(crossover_point+1:end)];
new_pop(i+1,:)=[p2(1:crossover_point) p1(crossover_point+1:end)];
else
new_pop(i,:)=pop(i,:);
new_pop(i+1,:)=pop(i+1,:);
end
end
end
% 将GEP表达式转换为MATLAB表达式
function expr=gep_to_matlab(gep_expr)
n_genes=length(gep_expr)/head_length;
expr='';
for i=1:head_length
gene=gep_expr((i-1)*n_genes+1:i*n_genes);
% 将基因映射到运算符和变量上
if gene(1)<=n_ops
op=ops(gene(1));
arg1=gep_to_matlab(gep_expr((gene(2)-1)*n_genes+1:gene(2)*n_genes));
arg2=gep_to_matlab(gep_expr((gene(3)-1)*n_genes+1:gene(3)*n_genes));
expr=[expr '(' arg1 op arg2 ')'];
else
var=vars(gene(1)-n_ops);
expr=[expr var];
end
end
end
```
其中,`fitness_func`是计算适应度的函数,`alphabet`是基因组成的字符集,`head_length`是头部长度,`num_genes`是每个基因的长度,`mutation_rate`是变异率,`crossover_rate`是交叉率。在这个示例中,我们假设表达式由运算符和变量构成,其中运算符包括`+`、`-`、`*`和`/`,变量包括`x`和`y`。对于更复杂的表达式,可以根据需要修改代码。
阅读全文