直方图均衡化matlab gui代码

时间: 2023-09-03 18:09:18 浏览: 169
以下是一个简单的 MATLAB GUI 代码示例,用于对图像进行直方图均衡化: ```matlab function varargout = histogram_equalization_gui(varargin) % HISTOGRAM_EQUALIZATION_GUI MATLAB code for histogram_equalization_gui.fig % HISTOGRAM_EQUALIZATION_GUI, by itself, creates a new HISTOGRAM_EQUALIZATION_GUI or raises the existing % singleton*. % % H = HISTOGRAM_EQUALIZATION_GUI returns the handle to a new HISTOGRAM_EQUALIZATION_GUI or the handle to % the existing singleton*. % % HISTOGRAM_EQUALIZATION_GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in HISTOGRAM_EQUALIZATION_GUI.M with the given input arguments. % % HISTOGRAM_EQUALIZATION_GUI('Property','Value',...) creates a new HISTOGRAM_EQUALIZATION_GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before histogram_equalization_gui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to histogram_equalization_gui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help histogram_equalization_gui % Last Modified by GUIDE v2.5 30-Apr-2021 10:28:09 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @histogram_equalization_gui_OpeningFcn, ... 'gui_OutputFcn', @histogram_equalization_gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before histogram_equalization_gui is made visible. function histogram_equalization_gui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to histogram_equalization_gui (see VARARGIN) % Choose default command line output for histogram_equalization_gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes histogram_equalization_gui wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = histogram_equalization_gui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Load an image from file [filename, pathname] = uigetfile({'*.bmp;*.jpg;*.png;*.gif','All Image Files';... '*.*','All Files' },'Select an image file'); if filename ~= 0 handles.I = imread(fullfile(pathname, filename)); axes(handles.axes1); imshow(handles.I); set(handles.pushbutton2,'Enable','on'); end guidata(hObject, handles); % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Convert image to grayscale I = rgb2gray(handles.I); % Perform histogram equalization J = histeq(I); % Display results axes(handles.axes2); imshow(J); guidata(hObject, handles); ``` 此代码使用了 MATLAB GUI,其中包含两个按钮和两个图像框。 第一个按钮(`pushbutton1`)用于加载图像文件,第二个按钮(`pushbutton2`)用于执行直方图均衡化并显示结果。 在 `pushbutton2` 回调函数中,首先将 RGB 图像转换为灰度图像,然后使用 `histeq` 函数执行直方图均衡化,并将结果显示在第二个图像框中。

相关推荐

按照如下要求:(MATLAB程序设计,利用MATLAB图像处理和信号处理工具箱,设计和实现简易的图像处理软件。实现以下功能: 1)图像的读取、显示和保存; 2)图像基本类型转换; 3)灰度图像直方图统计及分析; 4)图像对比度调整; 5)图像添加高斯噪声/椒盐噪声,其中噪声强度可调; 6)对含噪图像进行滤噪处理; 7)可以对鼠标选中的图像区域进行滤镜处理;)并仿照此段代码:1)直方图均衡化 function Untitled_8_Callback(hObject, eventdata, handles) im=handles.a; sz=length(size(im)); %判断是否为灰度图像 %size:获取数组的行数和列数 %length:数组长度(即行数或列数中的较大值) if sz == 2 equa=histeq(im); %直方图均衡 figure, subplot(121),imhist(im),title('直方图均衡前') subplot(122),imhist(equa),title('直方图均衡后') axes(handles.axes2) imshow(equa,'InitialMagnification','fit'),title('直方图均衡后图') else equa1 = histeq(im(:,:,1)); equa2 = histeq(im(:,:,2)); equa3 = histeq(im(:,:,3)); figure, subplot(231),imhist(im(:,:,1)),title('R分量直方图均衡前'); subplot(232),imhist(im(:,:,2)),title('G分量直方图均衡前'); subplot(233),imhist(im(:,:,3)),title('B分量直方图均衡前'); subplot(234),imhist(equa1),title('R分量直方图均衡前'); subplot(235),imhist(equa2),title('G分量直方图均衡前'); subplot(236),imhist(equa3),title('B分量直方图均衡前'); axes(handles.axes2) imshow(cat(3,equa1,equa2,equa3),'InitialMagnification','fit'),title('直方图均衡后图') end % hObject handle to Untitled_8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) 程序源代码以及关键部分注释 (2)canny算法 function Untitled_24_Callback(hObject, eventdata, handles) axes(handles.axes1); d = handles.a; B=getimage(handles.axes1); B = rgb2gray(B); img=edge(B,'canny'); axes(handles.axes2); imshow(img);写一段代码

最新推荐

recommend-type

matlab 直方图均衡实验报告

**程序设计**:报告中提到,程序采用了MATLAB的GUI界面,允许用户选择图像文件并进行直方图均衡化处理。程序的特色在于其直观的用户界面和高效的直方图统计算法。 **实验结果分析**:通过对不同亮度条件下的LENNA、...
recommend-type

基于MATLAB GUI的数字图像处理

在MATLAB中,可以使用histeq函数实现直方图均衡化。 4. **加噪与滤波**:在图像处理中,加噪是模拟真实环境中的噪声干扰,而滤波则用于去除这些噪声。MATLAB提供了多种加噪模型,如高斯噪声、椒盐噪声等,以及多种...
recommend-type

MATLAB gui课程设计

5. 图像直方图统计和直方图均衡 6. 频谱分析:使用频谱图和高通滤波器等算法对图像进行频谱分析 7. 颜色模型转换:使用RGB、HSV、CMYK等颜色模型对图像进行颜色模型转换 五、程序设计 1. 文件操作:打开、保存、...
recommend-type

Hadoop生态系统与MapReduce详解

"了解Hadoop生态系统的基本概念,包括其主要组件如HDFS、MapReduce、Hive、HBase、ZooKeeper、Pig、Sqoop,以及MapReduce的工作原理和作业执行流程。" Hadoop是一个开源的分布式计算框架,最初由Apache软件基金会开发,设计用于处理和存储大量数据。Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce,它们共同构成了处理大数据的基础。 HDFS是Hadoop的分布式文件系统,它被设计为在廉价的硬件上运行,具有高容错性和高吞吐量。HDFS能够处理PB级别的数据,并且能够支持多个数据副本以确保数据的可靠性。Hadoop不仅限于HDFS,还可以与其他文件系统集成,例如本地文件系统和Amazon S3。 MapReduce是Hadoop的分布式数据处理模型,它将大型数据集分解为小块,然后在集群中的多台机器上并行处理。Map阶段负责将输入数据拆分成键值对并进行初步处理,Reduce阶段则负责聚合map阶段的结果,通常用于汇总或整合数据。MapReduce程序可以通过多种编程语言编写,如Java、Ruby、Python和C++。 除了HDFS和MapReduce,Hadoop生态系统还包括其他组件: - Avro:这是一种高效的跨语言数据序列化系统,用于数据交换和持久化存储。 - Pig:Pig Latin是Pig提供的数据流语言,用于处理大规模数据,它简化了复杂的数据分析任务,运行在MapReduce之上。 - Hive:Hive是一个基于HDFS的数据仓库,提供类似SQL的查询语言(HQL)来方便地访问和分析存储在Hadoop中的数据。 - HBase:HBase是一个分布式NoSQL数据库,适用于实时查询和大数据分析,它利用HDFS作为底层存储,并支持随机读写操作。 - ZooKeeper:ZooKeeper是一个协调服务,提供分布式一致性,如命名服务、配置管理、选举和分布式同步,是构建分布式应用的关键组件。 - Sqoop:Sqoop是一个工具,用于高效地在Hadoop和传统的关系型数据库管理系统(RDBMS)之间导入导出数据。 MapReduce的工作流程包括作业提交、任务调度和执行。作业由客户端提交到JobTracker,JobTracker将作业分解为多个Map任务和Reduce任务,并分配给TaskTracker节点执行。TaskTracker节点负责执行任务并定期向JobTracker汇报进度。当所有任务完成时,JobTracker通知客户端作业完成。 Hadoop及其生态系统提供了全面的解决方案,从数据存储到数据处理,再到数据分析,使得处理海量数据变得可能和高效。通过理解和掌握这些核心概念,开发者可以构建强大的分布式应用程序,应对大数据挑战。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【算法与数据结构融合】:next算法在各领域中的多维应用

![【算法与数据结构融合】:next算法在各领域中的多维应用](https://media.geeksforgeeks.org/wp-content/uploads/20230316121305/Complexity-Analysis-A-complete-reference-(1).png) # 1. next算法概述及理论基础 在探索文本编辑、网络通信、编程语言处理、数据分析等众多领域中发挥核心作用的算法,next算法(也被称为next数组或部分匹配表)是一项极其重要的技术。next算法的基本理论在于通过一种预处理机制,提高字符串匹配的效率,它在KMP算法中扮演关键角色,是计算机科学中用
recommend-type

redis7.4安装

Redis 7.4是一个高性能的键值存储系统,常用于缓存、消息队列等场景。下面是安装Redis 7.4的基本步骤,假设你在Linux环境下: 1. **下载安装包**: - 访问Redis官方网站(https://redis.io/download)下载适用于你的系统的版本,如`redis-7.4.0.tar.gz`。 - 将下载的文件移动到合适的目录,比如`/tmp`。 2. **解压安装包**: ``` tar xvf redis-7.4.0.tar.gz ``` 3. **配置安装**: 进入解压后的目录: ``` cd redis-
recommend-type

MDS系列三相整流桥模块技术规格与特性

"MDS50A1200V是一款三相不可控整流桥,适用于高功率应用,如软启动电路、焊接设备和电机速度控制器。该芯片的最大整流电流为50A,耐压可达1200V,采用ISOTOP封装,具有高功率密度和优化的电源总线连接。" 详细内容: MDS50A1200V系列是基于半桥SCR二极管配置的器件,设计在ISOTOP模块中,主要特点在于其紧凑的封装形式,能够提供高功率密度,并且便于电源总线连接。由于其内部采用了陶瓷垫片,确保了高电压绝缘能力,达到了2500VRMS,符合UL标准。 关键参数包括: 1. **IT(RMS)**:额定有效值电流,有50A、70A和85A三种规格,这代表了整流桥在正常工作状态下可承受的连续平均电流。 2. **VDRM/VRRM**:反向重复峰值电压,可承受的最高电压为800V和1200V,这确保了器件在高压环境下的稳定性。 3. **IGT**:门触发电流,有50mA和100mA两种选择,这是触发整流桥导通所需的最小电流。 4. **IT(AV)**:平均导通电流,在单相电路中,180°导电角下每个设备的平均电流,Tc=85°C时,分别为25A、35A和55A。 5. **ITSM/IFSM**:非重复性浪涌峰值电流,Tj初始温度为25°C时,不同时间常数下的最大瞬态电流,对于8.3ms和10ms,数值有所不同,具体为420A至730A或400A至700A。 6. **I²t**:熔断I²t值,这是在10ms和Tj=25°C条件下,导致器件熔断的累积电流平方与时间乘积,数值范围为800A²S到2450A²S。 7. **dI/dt**:关断时的电流上升率,限制了电流的快速变化,避免对器件造成损害。 这些参数对于理解和使用MDS50A1200V至关重要,它们确保了器件在特定工作条件下的安全性和可靠性。在设计电路时,必须确保不超过这些绝对极限值,以防止过热、损坏或失效。此外,选择合适的驱动电路和保护机制也是使用此整流桥的关键,以确保其在电机控制、软启动等应用中的高效运行。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【提高计算效率】:next数组算法的并行化探索

![【提高计算效率】:next数组算法的并行化探索](https://itechhacks.com/wp-content/uploads/2023/01/HWINFO-RUN-1.jpg) # 1. next数组算法基础 随着数据处理需求的增长和计算能力的提升,算法优化和并行计算变得至关重要。本章将介绍next数组算法的基础知识,为读者理解后续章节的并行计算和优化内容打下基础。 ## 1.1 next数组算法概述 next数组算法是一种处理大型数据集的高效算法,特别适用于大数据环境下的数组运算。该算法能够有效减少计算资源的消耗,并提高数据处理速度。 ## 1.2 算法步骤与原理 该算法的