class Channel_Att(nn.Module): def __init__(self, channels, t=16): super(Channel_Att, self).__init__() self.channels = channels self.bn2 = nn.BatchNorm2d(self.channels, affine=True) def forward(self, x): residual = x x = self.bn2(x) weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs()) x = x.permute(0, 2, 3, 1).contiguous() x = torch.mul(weight_bn, x) x = x.permute(0, 3, 1, 2).contiguous() x = torch.sigmoid(x) * residual # return x
时间: 2023-12-16 18:04:25 浏览: 87
ThreePhasePowerDetector.rar_7022 stm32_ATT7022.rar_ATT7022代码_STM
5星 · 资源好评率100%
这段代码是一个 PyTorch 模型的定义,它实现了通道注意力机制(Channel Attention)。该模块的输入是一个四维张量 x,其形状为 [batch_size, channels, height, width],其中 channels 是输入特征图的通道数。在该模块中,首先对输入 x 进行了一个批归一化(Batch Normalization)操作,然后计算每个通道的权重,即 weight_bn,通过将权重与输入张量 x 点乘来加强或减弱每个通道的表示能力,最后再将得到的结果与原始输入张量相加并经过 sigmoid 激活函数得到输出。
该模块使用了一个 t 参数,其默认值为 16。该参数的作用是在计算权重时引入一个缩放因子,以控制注意力机制的强度。
阅读全文