halcon缺陷检测例程
时间: 2023-09-02 14:08:42 浏览: 90
以下是一个简单的 Halcon 缺陷检测例程。
首先,我们需要加载 Halcon 库和图像:
```
load_object_model ('shape_model', 'shape_model.sao')
read_image (Image, 'product_image.jpg')
```
接下来,我们需要对图像进行预处理,以便更容易地检测缺陷。这包括灰度化、平滑和二值化:
```
gray_image (Image, GrayImage)
gauss_filter (GrayImage, GaussImage, 5)
threshold (GaussImage, BinaryImage, 100, 255)
```
然后,我们可以使用形状模板匹配来检测缺陷。我们使用 `find_shape_model` 函数来查找形状模板,并将结果存储在 `Row` 和 `Column` 中:
```
find_shape_model (BinaryImage, 'shape_model', 0, 0, 0.5, 1, 0.5, 'least_squares', 6, Row, Column, Angle, Scale, Score)
```
最后,我们可以在原始图像上绘制出检测到的缺陷的框:
```
gen_rectangle2 (Rectangle, Row, Column, Angle, 50, 50)
dev_set_color ('red')
dev_display (Image)
dev_display_rectangle2 (Rectangle, Angle, Row, Column)
```
完整的例程如下:
```
load_object_model ('shape_model', 'shape_model.sao')
read_image (Image, 'product_image.jpg')
gray_image (Image, GrayImage)
gauss_filter (GrayImage, GaussImage, 5)
threshold (GaussImage, BinaryImage, 100, 255)
find_shape_model (BinaryImage, 'shape_model', 0, 0, 0.5, 1, 0.5, 'least_squares', 6, Row, Column, Angle, Scale, Score)
gen_rectangle2 (Rectangle, Row, Column, Angle, 50, 50)
dev_set_color ('red')
dev_display (Image)
dev_display_rectangle2 (Rectangle, Angle, Row, Column)
```
阅读全文