这里combinations不被定义,要怎么修改呢for i in range(1, len(l)): for freq_set in l[i]: for subset in map(frozenset, [x for x in combinations(freq_set, r=i)]): rules.append((subset, freq_set - subset))
时间: 2024-01-28 14:05:45 浏览: 137
你需要在使用combinations之前导入itertools模块,因为combinations函数在该模块中定义。可以将以下代码添加到文件的开头来导入itertools模块:
```python
from itertools import combinations
```
这样,你就可以在代码中使用combinations函数了,而不会出现未定义的错误。
相关问题
import pandas as pd from itertools import combinations # 读取数据集 data = pd.read_csv('groceries.csv', header=None) transactions = data.values.tolist() # 设定支持度和置信度的阈值 min_support = 0.01 min_confidence = 0.5 # 生成频繁1项集 item_count = {} for transaction in transactions: for item in transaction: if item in item_count: item_count[item] += 1 else: item_count[item] = 1 num_transactions = len(transactions) freq_1_itemsets = [] for item, count in item_count.items(): support = count / num_transactions if support >= min_support: freq_1_itemsets.append([item]) # 生成频繁项集和关联规则 freq_itemsets = freq_1_itemsets[:] for k in range(2, len(freq_1_itemsets) + 1): candidates = [] for itemset in freq_itemsets: for item in freq_1_itemsets: if item[0] not in itemset: candidate = itemset + item if candidate not in candidates: candidates.append(candidate) freq_itemsets_k = [] for candidate in candidates: count = 0 for transaction in transactions: if set(candidate).issubset(set(transaction)): count += 1 support = count / num_transactions if support >= min_support: freq_itemsets_k.append(candidate) freq_itemsets += freq_itemsets_k # 生成关联规则 for itemset in freq_itemsets_k: for i in range(1, len(itemset)): for subset in combinations(itemset, i): antecedent = list(subset) consequent = list(set(itemset) - set(subset)) support_antecedent = item_count[antecedent[0]] / num_transactions for item in antecedent[1:]: support_antecedent = min(support_antecedent, item_count[item] / num_transactions) confidence = count / (support_antecedent * num_transactions) if confidence >= min_confidence: print(antecedent, '->', consequent, ':', confidence)完善这段代码
这这是这是Python这是Python的这是Python的代码这是Python的代码,这是Python的代码,用这是Python的代码,用于这是Python的代码,用于导这是Python的代码,用于导入这是Python的代码,用于导入p这是Python的代码,用于导入pandas这是Python的代码,用于导入pandas库这是Python的代码,用于导入pandas库,并这是Python的代码,用于导入pandas库,并从这是Python的代码,用于导入pandas库,并从it这是Python的代码,用于导入pandas库,并从itertools这是Python的代码,用于导入pandas库,并从itertools库这是Python的代码,用于导入pandas库,并从itertools库中这是Python的代码,用于导入pandas库,并从itertools库中导这是Python的代码,用于导入pandas库,并从itertools库中导入这是Python的代码,用于导入pandas库,并从itertools库中导入com这是Python的代码,用于导入pandas库,并从itertools库中导入combinations这是Python的代码,用于导入pandas库,并从itertools库中导入combinations函数这是Python的代码,用于导入pandas库,并从itertools库中导入combinations函数。
帮我加一段代码使其能够计算置信度ef apriori(data, min_sup=0.05): l1, sup_data = create_l1(data, min_sup) l = [l1] k = 2 while len(l[k - 2]) > 0: ck = lk_to_ckk(l[k - 2], k) #将频繁k-1项集合并到候选k项集 lk, supk = ck_to_lk(data, ck, min_sup) #计算每个候选k项集在数据集中出现的频率 sup_data.update(supk) #supk表示每个频繁k项集在数据集中的支持度 l.append(lk) #lk是频繁k项集 k += 1 for key,value in sup_data.items(): printData("{}:{}".format(key,value)) print(sup_data) print(len(sup_data)) return l, sup_data
以下是增加置信度计算的代码:
```python
import pandas as pd
# 计算置信度
def calc_conf(sup_data, rules, min_conf):
pruned_rules = []
for rule in rules:
conf = sup_data[rule[0] | rule[1]] / sup_data[rule[0]]
if conf >= min_conf:
pruned_rules.append((rule[0], rule[1], conf))
return pruned_rules
# Apriori算法
def apriori(data, min_sup=0.05, min_conf=0.5):
l1, sup_data = create_l1(data, min_sup)
l = [l1]
k = 2
while len(l[k - 2]) > 0:
ck = lk_to_ckk(l[k - 2], k)
lk, supk = ck_to_lk(data, ck, min_sup)
sup_data.update(supk)
l.append(lk)
k += 1
# 打印频繁项集及其支持度
for key, value in sup_data.items():
printData("{}:{}".format(key, value))
# 计算关联规则
rules = []
for i in range(1, len(l)):
for freq_set in l[i]:
for subset in map(frozenset, [x for x in combinations(freq_set, r=i)]):
rules.append((subset, freq_set - subset))
# 打印关联规则及其置信度
pruned_rules = calc_conf(sup_data, rules, min_conf)
for rule in pruned_rules:
printData("{}=>{}, conf:{}".format(rule[0], rule[1], rule[2]))
return l, sup_data
```
在上述代码中,我们定义了一个名为`calc_conf`的函数来计算关联规则的置信度,该函数接收三个参数:频繁项集的支持度信息、关联规则列表和最小置信度,返回一个经过剪枝的关联规则列表。我们还修改了`apriori`函数的代码,以在计算频繁项集和支持度的同时计算关联规则及其置信度,并输出结果。
阅读全文
相关推荐












