matlab做ufmc仿真代码

时间: 2023-08-06 18:02:54 浏览: 98
以下是UFMC系统仿真的MATLAB代码,包括信道模型,发送端,接收端和误码率计算等部分。你需要根据自己的需求修改参数和调整代码。 信道模型: ```matlab % 信道模型 function [h, H] = channel_model(N, K, M, L, Ts, fd, Pdp, tau) % N: 过采样率 % K: 码元数 % M: 子载波数 % L: 多径数 % Ts: 符号时间 % fd: 多普勒频移 % Pdp: 功率延时谱 % tau: 路径时延 % 计算矩阵H H = zeros(K, M); for k = 0:K-1 for m = 0:M-1 H(k+1, m+1) = sqrt(1/M) * exp(-1i * 2 * pi * k * m / M); end end % 计算时域信道系数h t = (0:N*L-1).' * Ts / N; % 时间戳 pdp = sqrt(Pdp / sum(Pdp)); % 归一化功率延时谱 h_t = zeros(N*L, 1); % 时域信道系数 for l = 1:L h_t = h_t + pdp(l) * exp(1i * 2 * pi * fd(l) * t) .* sinc((t-tau(l))/Ts); end % 时域信道系数采样 h = zeros(K, M); for k = 0:K-1 for m = 0:M-1 h(k+1, m+1) = h_t(k*M+m+1); end end end ``` 发送端: ```matlab % 发送端 function [X, Xp] = transmitter(N, K, M, H, data, p) % N: 过采样率 % K: 码元数 % M: 子载波数 % H: 时域信道系数 % data: 二进制数据 % p: 循环前缀长度 % 二进制数据转换为符号 symbols = 2 * data - 1; % 符号扩展 s = zeros(K, 1); s(1:length(symbols)) = symbols; % DFT X = fft(s); % 多载波调制 X = repmat(X, 1, M) .* H; % IDFT X = ifft(X); % 添加循环前缀 Xp = [X(N-p+1:N,:); X]; end ``` 接收端: ```matlab % 接收端 function [Yp, Y] = receiver(N, K, M, H, Xp, N0) % N: 过采样率 % K: 码元数 % M: 子载波数 % H: 时域信道系数 % Xp: 发送信号(含循环前缀) % N0: 噪声功率谱密度 % 去除循环前缀 X = Xp(N+1:end,:); % FFT Y = fft(X); % 多载波解调 Y = Y ./ repmat(H, 1, M); % 信噪比 SNR = 10^(N0/10); % 加噪声 noise = sqrt(SNR/2) * (randn(K, M) + 1i * randn(K, M)); % 接收信号 Y = Y + noise; % IFFT Yp = ifft(Y); % 去除循环前缀 Yp = Yp(N+1:end,:); end ``` 误码率计算: ```matlab % 误码率计算 function [ber, nerr, nbits] = bit_error_rate(data, data_hat) % data: 发送数据 % data_hat: 接收数据 % 统计比特数 nbits = length(data); % 统计误码数 nerr = sum(data ~= data_hat); % 计算误码率 ber = nerr / nbits; end ``` 完整代码: ```matlab % UFMC系统仿真 clear all; close all; % 参数设置 N = 64; % 过采样率 K = 16; % 码元数 M = 4; % 子载波数 L = 3; % 多径数 Ts = 1e-6; % 符号周期 fd = [-500e3, 0, 500e3]; % 多普勒频移 Pdp = [0.8 0.15 0.05]; % 功率延时谱 tau = [0 1e-6 2e-6]; % 路径时延 N0 = -30; % 噪声功率谱密度 p = 16; % 循环前缀长度 % 生成二进制数据 data = randi([0,1], K, 1); % 信道模型 [h, H] = channel_model(N, K, M, L, Ts, fd, Pdp, tau); % 发送端 [X, Xp] = transmitter(N, K, M, H, data, p); % 接收端 [Yp, Y] = receiver(N, K, M, H, Xp, N0); % 解调 Y_hat = real(Yp) > 0; % 误码率计算 [ber, nerr, nbits] = bit_error_rate(data, Y_hat); fprintf('误码率: %.4f (%d/%d)\n', ber, nerr, nbits); ```
阅读全文

相关推荐

最新推荐

recommend-type

脉冲压缩处理MATLAB仿真实验报告

【脉冲压缩处理MATLAB仿真实验报告】 在雷达系统中,脉冲压缩是一种关键的信号处理技术,它能够在保持远距离探测能力的同时提高距离分辨率。脉冲压缩实验旨在理解和应用这种技术,通过MATLAB仿真深入分析其工作原理...
recommend-type

电子扫描阵列MATLAB®建模与仿真源代码

"电子扫描阵列MATLAB®建模与仿真源代码" 本资源提供了电子扫描阵列的MATLAB建模和仿真源代码,涵盖了电子扫描阵列的建模、仿真和分析等方面的知识点。下面将对该资源进行详细的解读和分析: 知识点1:MATLAB在...
recommend-type

ofdm系统matlab完整仿真代码与解析

OFDM(Orthogonal Frequency Division ...通过这个MATLAB仿真代码,我们可以深入理解OFDM系统的工作原理,以及在实际通信环境中如何处理各种干扰和噪声。对于学习和研究无线通信系统的学者来说,这是一个宝贵的资源。
recommend-type

基于Matlab/Simulink的变频系统仿真

基于 Matlab/Simulink 的变频系统仿真 Matlab/Simulink 是一种功能强大且齐全的仿真软件,特别适用于电力系统的仿真。Simulink(7.04)工具箱中有电力系统 SimPowerSystem 的工具箱,为变频器仿真提供了几乎所需的...
recommend-type

carsim和matlab的联合仿真.docx

《Carsim与MATLAB联合仿真的基础指南》 在智能网联汽车和无人驾驶技术的研究领域,模拟仿真工具的使用至关重要,其中Carsim和MATLAB是两大主流软件。本篇文章将详细解析如何通过Carsim进行车辆动力学建模,并与...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。