基于transformer光伏发电预测
时间: 2023-09-12 16:08:56 浏览: 453
光伏发电预测是指通过对天气、光照、温度等多种因素的分析和预测,预测未来一段时间内光伏发电的情况。基于transformer的光伏发电预测可以通过将历史的光伏发电数据和相关的天气、光照、温度等因素输入到transformer模型中进行训练,从而得到一个可以预测未来光伏发电情况的模型。这个模型可以用来指导光伏电站的运营和管理,提高光伏发电的效率和稳定性。
相关问题
代码生成python基于transformer的光伏发电预测
以下是一个基于Transformer的光伏发电预测模型的代码示例:
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Dataset, DataLoader
# 定义Transformer模型
class Transformer(nn.Module):
def __init__(self, input_dim, output_dim, d_model, nhead, num_layers):
super(Transformer, self).__init__()
self.encoder = nn.Linear(input_dim, d_model)
self.decoder = nn.Linear(d_model, output_dim)
self.transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model, nhead), num_layers
)
def forward(self, x):
x = self.encoder(x)
x = x.permute(1, 0, 2)
x = self.transformer(x)
x = x.permute(1, 0, 2)
x = self.decoder(x)
return x[:, -1, :]
# 定义数据集
class PVData(Dataset):
def __init__(self, data, target):
self.data = data
self.target = target
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx], self.target[idx]
# 数据预处理
data = pd.read_csv('pv_data.csv')
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data)
# 划分训练集和测试集
train_size = int(len(data_scaled) * 0.8)
train_data = data_scaled[:train_size, :]
test_data = data_scaled[train_size:, :]
# 准备训练数据和测试数据
train_x, train_y = train_data[:, :-1], train_data[:, -1]
test_x, test_y = test_data[:, :-1], test_data[:, -1]
train_dataset = PVData(train_x, train_y)
test_dataset = PVData(test_x, test_y)
# 定义超参数
input_dim = train_x.shape[1]
output_dim = 1
d_model = 128
nhead = 8
num_layers = 6
batch_size = 64
epochs = 100
# 初始化模型和优化器
model = Transformer(input_dim, output_dim, d_model, nhead, num_layers)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# 训练模型
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
for epoch in range(epochs):
for x, y in train_loader:
optimizer.zero_grad()
y_pred = model(x.float())
loss = criterion(y_pred.squeeze(), y.float())
loss.backward()
optimizer.step()
print(f'epoch: {epoch+1}, loss: {loss.item():.4f}')
# 测试模型
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
y_pred = []
with torch.no_grad():
for x, _ in test_loader:
pred = model(x.float())
y_pred.append(pred.squeeze().numpy())
y_pred = np.concatenate(y_pred)
test_y = scaler.inverse_transform(test_y.reshape(-1, 1))
y_pred = scaler.inverse_transform(y_pred.reshape(-1, 1))
# 计算MSE和MAE
mse = np.mean((test_y - y_pred)**2)
mae = np.mean(np.abs(test_y - y_pred))
print(f'Test MSE: {mse:.4f}, Test MAE: {mae:.4f}')
其中,'pv_data.csv'是存储光伏发电数据的文件名。该代码通过Transformer模型对光伏发电数据进行预测,并计算预测结果的MSE和MAE。