生成使用matlab通过HMM并且以LPCC进行音频特征的车型识别的代码
时间: 2023-11-28 21:50:59 浏览: 129
以下是一个基于HMM和LPCC特征的车型识别的MATLAB代码示例:
1. 导入音频数据
```matlab
filename = 'car.wav';
[x, fs] = audioread(filename);
```
2. 提取LPCC特征
```matlab
% 预加重
pre_emphasis = [1 -0.97];
x = filter(pre_emphasis, 1, x);
% 分帧
frame_len = round(20 * fs / 1000); % 帧长20ms
frame_shift = round(10 * fs / 1000); % 帧移10ms
frames = buffer(x, frame_len, frame_len - frame_shift);
% 加窗
win = hamming(frame_len);
frames = frames .* repmat(win, 1, size(frames, 2));
% 计算MFCC系数
mfccs = mfcc(frames, fs, 'NumCoeffs', 13, 'LifterParam', 22, 'LFCC', true);
% 计算LPCC系数
ncoeffs = 13;
lpccs = zeros(size(mfccs));
for i = 1:size(mfccs, 2)
lpccs(:, i) = lpc(mfccs(:, i), ncoeffs);
end
```
3. 训练HMM模型
```matlab
% 建立状态和观测的映射关系
states = {'sedan', 'suv', 'truck'};
obs = lpccs;
[~, labels] = max(kmeans(obs', 3)); % 使用k-means聚类得到初始标签
map = [labels' 1:length(labels)];
% 训练HMM模型
nstates = length(states);
nex = size(obs, 2);
prior1 = ones(nstates, 1) / nstates;
transmat1 = ones(nstates, nstates) / nstates;
obsmat1 = rand(nstates, ncoeffs+1);
[~, obsmat1] = kmeans([obs; labels'], nstates);
[LL, prior2, transmat2, obsmat2] = dhmm_em(obs, prior1, transmat1, obsmat1, 'max_iter', 50);
```
4. 进行车型识别
```matlab
% 对测试数据进行LPCC特征提取
filename = 'test_car.wav';
[x, fs] = audioread(filename);
x = filter(pre_emphasis, 1, x);
frames = buffer(x, frame_len, frame_len - frame_shift);
frames = frames .* repmat(win, 1, size(frames, 2));
mfccs = mfcc(frames, fs, 'NumCoeffs', 13, 'LifterParam', 22, 'LFCC', true);
lpccs = zeros(size(mfccs));
for i = 1:size(mfccs, 2)
lpccs(:, i) = lpc(mfccs(:, i), ncoeffs);
end
% 使用Viterbi算法对LPCC特征序列进行解码,得到最可能的状态序列
[~, path] = hmmdecode(lpccs', prior2, transmat2, obsmat2');
% 将状态序列转换为车型标签
labels = map(path, 1);
car_type = mode(labels); % 取众数作为最终识别结果
```
以上就是一个基于HMM和LPCC特征的车型识别的MATLAB代码示例。需要注意的是,该示例中使用的是三种车型(sedan、suv、truck)进行训练和测试,如果需要识别更多的车型,则需要增加训练数据和修改代码。
阅读全文