hive中CREATE TABLE LIKE是否会保留表的orc

时间: 2024-03-01 17:52:32 浏览: 61
在Hive中,CREATE TABLE LIKE命令会保留表的存储格式,包括ORC格式。这意味着如果原始表使用ORC格式存储数据,那么新表也将使用ORC格式存储数据,除非你在创建新表时指定了不同的存储格式。 例如,以下命令将创建一个名为new_table的新表,它与old_table具有相同的列名称、数据类型和约束,并且使用ORC格式存储数据: ``` CREATE TABLE new_table LIKE old_table STORED AS ORC; ``` 新表将在与原始表相同的位置创建,并且使用ORC格式存储数据。需要注意的是,使用LIKE创建的新表不会继承原始表的表属性,如表的存储位置、表的格式等,需要手动设置。 因此,在Hive中,CREATE TABLE LIKE命令可以保留表的存储格式,包括ORC格式。
相关问题

mysql快速转hive

要将MySQL数据库中的表快速转换为Hive表,您可以执行以下步骤: 1. 首先,打开SQL查询工具,并执行以下转换查询语句: ``` SET SESSION group_concat_max_len = 102400; SELECT a.TABLE_NAME, b.TABLE_COMMENT, concat('DROP TABLE IF EXISTS ', a.TABLE_NAME, ';CREATE TABLE IF NOT EXISTS ', a.TABLE_NAME, ' (', group_concat(concat(a.COLUMN_NAME, ' ', c.data_type2, " COMMENT '", COLUMN_COMMENT, "'") order by a.TABLE_NAME, a.ORDINAL_POSITION), ") COMMENT '", b.TABLE_COMMENT, "' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\\t' STORED AS orcfile;") AS col_name FROM ( SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, ORDINAL_POSITION, DATA_TYPE, COLUMN_COMMENT FROM information_schema.COLUMNS WHERE TABLE_SCHEMA = '你的库名' ) AS a LEFT JOIN information_schema.TABLES AS b ON a.TABLE_NAME = b.TABLE_NAME AND a.TABLE_SCHEMA = b.TABLE_SCHEMA #选择源为mysql,目标为hive LEFT JOIN ( SELECT * FROM dim_ddl_convert WHERE source = 'mysql' AND target = 'hive' ) AS c ON a.DATA_TYPE = c.data_type1 WHERE b.TABLE_TYPE = 'BASE TABLE' AND a.TABLE_NAME NOT LIKE 'ods_%' GROUP BY a.TABLE_NAME, b.TABLE_COMMENT; ``` 2. 如果您想将Hive表定义为外部表,可以执行以下转换查询语句: ``` SET SESSION group_concat_max_len = 102400; SELECT a.TABLE_NAME, b.TABLE_COMMENT, concat('DROP TABLE IF EXISTS ', a.TABLE_NAME, ';CREATE EXTERNAL TABLE IF NOT EXISTS ', a.TABLE_NAME, ' (', group_concat(concat(a.COLUMN_NAME, ' ', c.data_type2, " COMMENT '", COLUMN_COMMENT, "'") order by a.TABLE_NAME, a.ORDINAL_POSITION), ") COMMENT '", b.TABLE_COMMENT, "' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\\t' STORED AS orc;") AS col_name FROM ( SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, ORDINAL_POSITION, DATA_TYPE, COLUMN_COMMENT FROM information_schema.COLUMNS WHERE TABLE_SCHEMA = '你的库名' ) AS a LEFT JOIN information_schema.TABLES AS b ON a.TABLE_NAME = b.TABLE_NAME AND a.TABLE_SCHEMA = b.TABLE_SCHEMA #选择源为mysql,目标为hive LEFT JOIN ( SELECT * FROM dim_ddl_convert WHERE source = 'mysql' AND target = 'hive' ) AS c ON a.DATA_TYPE = c.data_type1 WHERE b.TABLE_TYPE = 'BASE TABLE' AND a.TABLE_NAME NOT LIKE 'ods_%' GROUP BY a.TABLE_NAME, b.TABLE_COMMENT; ``` 3. 在上述查询语句中,确保将`你的库名`替换为您实际的数据库名称。 4. 执行查询语句后,将会生成一系列DDL语句,用于创建或更新Hive表的结构。 5. 根据您的需求,选择相应的DDL语句并在Hive中执行,即可将MySQL表转换为Hive表。 请注意,转换过程中可能需要根据实际情况进行调整,比如确保数据库连接和权限设置正确。同时,建议在执行DDL语句之前,对生成的语句进行仔细检查,确保转换的准确性和完整性。 引用提供了一个示例维度表`dim_ddl_convert`的建表语句,您可以使用它来存储和管理其他数据库表的结构转换信息。

写一段HIVE数据仓库在大数据环境中的应用代码

### 回答1: 以下是一段HIVE数据仓库在大数据环境中的应用代码: CREATE TABLE IF NOT EXISTS sales ( id INT, product_name STRING, sale_date DATE, sale_amount DOUBLE ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; LOAD DATA LOCAL INPATH '/path/to/sales.csv' INTO TABLE sales; SELECT product_name, SUM(sale_amount) AS total_sales FROM sales WHERE sale_date BETWEEN '2021-01-01' AND '2021-12-31' GROUP BY product_name ORDER BY total_sales DESC LIMIT 10; 这段代码创建了一个名为sales的表,将一个CSV文件中的数据加载到该表中,并使用HIVE查询语言计算了2021年销售额最高的前10个产品。在大数据环境中,HIVE可以帮助我们管理和查询海量数据,提高数据处理效率和准确性。 ### 回答2: HIVE是一个基于Hadoop的数据仓库工具,它提供了类似于SQL的查询语言,可以方便地对大数据进行查询和分析。在大数据环境中,HIVE的应用代码可以用于进行数据处理、数据分析和数据挖掘等任务。 下面是一个简单的HIVE应用代码示例,用于在大数据环境中运行一个用户分析任务: ``` -- 创建用户日志表 CREATE TABLE IF NOT EXISTS user_logs ( id INT, user_id INT, event_type STRING, event_date STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'; -- 加载用户日志数据 LOAD DATA INPATH '/path/to/user_logs.txt' INTO TABLE user_logs; -- 统计每个用户的活动次数 SELECT user_id, COUNT(*) AS activity_count FROM user_logs GROUP BY user_id; -- 计算每天的活动次数 SELECT event_date, COUNT(*) AS daily_activity_count FROM user_logs GROUP BY event_date; -- 查找活跃用户(活动次数前10名) SELECT user_id, COUNT(*) AS activity_count FROM user_logs GROUP BY user_id ORDER BY activity_count DESC LIMIT 10; ``` 以上代码示例中,我们首先创建了一个名为`user_logs`的用户日志表,然后使用`LOAD DATA`命令将用户日志数据加载到该表中。接下来,我们使用了一些HIVE查询语句,对用户日志数据进行了统计和分析,包括计算每个用户的活动次数、每天的活动次数以及查找活跃用户。这些查询语句使用了HIVE的SQL-like查询语法,可以方便地对大数据进行查询和分析。 需要注意的是,以上代码仅仅是一个简单示例,实际应用中可能涉及更复杂的数据处理和分析任务。HIVE提供了丰富的数据处理函数和扩展性,可以根据具体的需求进行灵活的定制和扩展。 ### 回答3: 在大数据环境中,HIVE数据仓库是一个常用的开源分布式数据仓库工具,用于处理和分析大规模的结构化和半结构化数据。以下是一个示例代码,展示了HIVE数据仓库在大数据环境中的应用: ```sql -- 创建一个数据库 CREATE DATABASE IF NOT EXISTS my_database; -- 使用该数据库 USE my_database; -- 创建一个外部表,指向HDFS中的数据文件 CREATE EXTERNAL TABLE IF NOT EXISTS user_logs ( user_id INT, username STRING, activity STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE LOCATION '/user/hdfs/user_logs'; -- 创建一个内部表,用于储存数据仓库中的数据 CREATE TABLE IF NOT EXISTS user_activity_summary ( user_id INT, username STRING, total_activities INT ) STORED AS ORC; -- 插入数据到内部表 INSERT INTO user_activity_summary SELECT user_id, username, COUNT(*) as total_activities FROM user_logs GROUP BY user_id, username; -- 查询数据仓库中的数据 SELECT * FROM user_activity_summary WHERE total_activities >= 10; ``` 上述代码中,首先创建了一个名为`my_database`的数据库,并将其设为当前使用的数据库。然后创建了一个外部表`user_logs`,将其与HDFS中的`/user/hdfs/user_logs`路径关联起来,指定了数据文件的格式和分隔符。接着创建了一个内部表`user_activity_summary`,用来存储数据仓库中的数据,将其格式设为ORC。最后,通过插入语句将外部表`user_logs`中的数据统计并插入到内部表`user_activity_summary`中,并通过查询语句检索具有活动总数大于等于10的用户活动摘要。 这段代码展示了HIVE数据仓库在大数据环境中的主要应用,可以通过HIVE语句对大规模数据进行处理、分析和查询,从而实现数据仓库的构建和应用。
阅读全文

相关推荐

最新推荐

recommend-type

如何在python中写hive脚本

这段代码会读取`sql.sql`文件中的Hive查询,并将结果转化为Pandas DataFrame。 2. **执行Hive语句** 如果是单条Hive查询语句,可以通过`os.system`或`os.popen`执行。例如: ```python hive_cmd = 'hive -e ...
recommend-type

Apache Hive 中文手册.docx

Apache Hive 是一个构建在Hadoop生态系统之上的数据仓库工具,其设计目的是为了简化对大量分布式存储数据的管理和分析。Hive 提供了SQL(结构化查询语言)接口,使得非编程背景的用户也能轻松地对大数据进行操作。...
recommend-type

shell中循环调用hive sql 脚本的方法

这个脚本会遍历参数列表,对于每个参数,它会在`tb_a`表的`comments`列中查找关键词的位置,并将结果保存到本地目录`/tmp/$param`对应的文件中。 更进一步,如果我们不只关心关键词是否存在,而是想过滤掉那些没有...
recommend-type

Mysql元数据如何生成Hive建表语句注释脚本详解

总的来说,通过查询MySQL的元数据并进行适当的转换,我们可以生成Hive的建表语句,确保在Hive中重建的数据表与原MySQL表结构一致,同时保留了字段注释,从而提高数据管理和使用的便利性。对于其他类型的关系型数据库...
recommend-type

命令手册 Linux常用命令

命令手册 Linux常用命令
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"