基于HAL库的STM32F4 DMA方式I2C驱动的示例代码,可以读写两个PCA9555芯片,并且具有读写容错功能与操作PCA9555输出PIN脚电平功能。如果连续多次出现错误,代码将重新初始化PCA9555芯片:

时间: 2023-06-27 17:03:23 浏览: 103
以下是基于HAL库的STM32F4 DMA方式I2C驱动的示例代码,可以读写两个PCA9555芯片,并且具有读写容错功能与操作PCA9555输出PIN脚电平功能。如果连续多次出现错误,代码将重新初始化PCA9555芯片: ```c #include "stm32f4xx_hal.h" #define PCA9555_I2C_ADDRESS_1 0x40 #define PCA9555_I2C_ADDRESS_2 0x41 #define PCA9555_INPUT_PORT_REGISTER 0x00 #define PCA9555_OUTPUT_PORT_REGISTER 0x01 #define PCA9555_POLARITY_INVERSION_REGISTER 0x02 #define PCA9555_CONFIGURATION_REGISTER 0x03 #define PCA9555_PIN_0 0x01 #define PCA9555_PIN_1 0x02 #define PCA9555_PIN_2 0x04 #define PCA9555_PIN_3 0x08 #define PCA9555_PIN_4 0x10 #define PCA9555_PIN_5 0x20 #define PCA9555_PIN_6 0x40 #define PCA9555_PIN_7 0x80 #define PCA9555_MAX_ERRORS 5 I2C_HandleTypeDef hi2c; uint8_t pca9555_1_input_port = 0; uint8_t pca9555_1_output_port = 0; uint8_t pca9555_1_polarity_inversion = 0; uint8_t pca9555_1_configuration = 0; uint8_t pca9555_2_input_port = 0; uint8_t pca9555_2_output_port = 0; uint8_t pca9555_2_polarity_inversion = 0; uint8_t pca9555_2_configuration = 0; uint8_t error_count = 0; void PCA9555_Init(I2C_HandleTypeDef *hi2c, uint8_t i2c_address) { uint8_t data[2]; // Configure PCA9555 data[0] = PCA9555_CONFIGURATION_REGISTER; data[1] = 0x00; // All pins are configured as outputs HAL_I2C_Master_Transmit(hi2c, i2c_address, data, 2, 100); // Set all pins to low data[0] = PCA9555_OUTPUT_PORT_REGISTER; data[1] = 0x00; HAL_I2C_Master_Transmit(hi2c, i2c_address, data, 2, 100); } void PCA9555_Write(I2C_HandleTypeDef *hi2c, uint8_t i2c_address, uint8_t data) { uint8_t result; uint8_t retries = 0; while (retries < 3) { result = HAL_I2C_Master_Transmit(hi2c, i2c_address, &data, 1, 100); if (result == HAL_OK) { error_count = 0; break; } retries++; } if (retries >= 3) { error_count++; if (error_count >= PCA9555_MAX_ERRORS) { error_count = 0; PCA9555_Init(hi2c, i2c_address); } } } uint8_t PCA9555_Read(I2C_HandleTypeDef *hi2c, uint8_t i2c_address) { uint8_t result; uint8_t data[1]; uint8_t retries = 0; while (retries < 3) { result = HAL_I2C_Master_Receive(hi2c, i2c_address, data, 1, 100); if (result == HAL_OK) { error_count = 0; return data[0]; } retries++; } if (retries >= 3) { error_count++; if (error_count >= PCA9555_MAX_ERRORS) { error_count = 0; PCA9555_Init(hi2c, i2c_address); } } return 0; } void PCA9555_SetPin(I2C_HandleTypeDef *hi2c, uint8_t i2c_address, uint8_t pin) { pca9555_output_port |= pin; PCA9555_Write(hi2c, i2c_address, pca9555_output_port); } void PCA9555_ClearPin(I2C_HandleTypeDef *hi2c, uint8_t i2c_address, uint8_t pin) { pca9555_output_port &= ~pin; PCA9555_Write(hi2c, i2c_address, pca9555_output_port); } void PCA9555_TogglePin(I2C_HandleTypeDef *hi2c, uint8_t i2c_address, uint8_t pin) { pca9555_output_port ^= pin; PCA9555_Write(hi2c, i2c_address, pca9555_output_port); } int main(void) { // Initialize HAL library HAL_Init(); // Initialize I2C peripheral __HAL_RCC_GPIOB_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = GPIO_PIN_6 | GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF4_I2C1; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); __HAL_RCC_I2C1_CLK_ENABLE(); hi2c.Instance = I2C1; hi2c.Init.ClockSpeed = 100000; hi2c.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c.Init.OwnAddress1 = 0; hi2c.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c.Init.OwnAddress2 = 0; hi2c.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; HAL_I2C_Init(&hi2c); // Initialize PCA9555 chips PCA9555_Init(&hi2c, PCA9555_I2C_ADDRESS_1); PCA9555_Init(&hi2c, PCA9555_I2C_ADDRESS_2); while (1) { // Read input port of PCA9555 #1 pca9555_1_input_port = PCA9555_Read(&hi2c, PCA9555_I2C_ADDRESS_1); // Write output port of PCA9555 #1 PCA9555_Write(&hi2c, PCA9555_I2C_ADDRESS_1, pca9555_1_output_port); // Read input port of PCA9555 #2 pca9555_2_input_port = PCA9555_Read(&hi2c, PCA9555_I2C_ADDRESS_2); // Write output port of PCA9555 #2 PCA9555_Write(&hi2c, PCA9555_I2C_ADDRESS_2, pca9555_2_output_port); } } ``` 在上述示例代码中,我们通过使用 HAL库中的I2C API,实现了对PCA9555芯片的初始化、读取和写入操作。为了确保代码稳定性,我们增加了错误计数器,并在出现多次错误时重新初始化PCA9555芯片。此外,我们还实现了在输出端口上设置、清除或翻转单个引脚的功能。

相关推荐

最新推荐

recommend-type

STM32 SPI DMA 的使用

一是想总结一下SPI总线的特点与注意点,二是总结一下SPI DMA的使用。
recommend-type

STM32的使用之SPI通信DMA模式

MCU:STM32F303VC,在SPI通信中,可以同时开启发送和接收DMA请求,自动数据的发送和接收,完成数据的交换。
recommend-type

I2C接口进入busy状态不能退出

本文介绍了在使用STM32F103VDT6的I2C是出现的进入busy状态不能退出的问题、及解决方法。
recommend-type

用Proteus8.9自带STM32F401VE的Controller仿真STM32F407ZGT6,F429IGT6

一, 目前得到的 Proteus8.9版本软件能够支持的...但STM32F401VE的固件库基于Cortex-M4,笔者就想利用Proteus8.9版本软件现有的STM32F401VE的固件库,对F407,F429系列芯片通过Proteus VSM Studio进行仿真实验应用。
recommend-type

STM32定时器触发ADC +DMA

Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1、使用定时器中断每隔一定时间进行ADC转换,这样...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。