# convert dataframe to string table_string = df.to_string(index=False) fig, ax = plt.subplots(figsize=(8, 6)) plt.title('时域分析结果') # hide axes and add table string to plot ax.axis('off') ax.text(0.35, 0.7, table_string, va='top', bbox={'facecolor': 'white', 'alpha': 1, 'edgecolor': 'black'}) # save plot as png plt.savefig('table1.png') pixmap2 = QPixmap("table1.png") self.figure_label2.setPixmap(pixmap2) elif self.analysis_combo.currentText() == "频域分析": data = np.loadtxt(data_file)[:, 1] signal = np.array(data) # 采样频率什么意思
时间: 2024-02-15 19:27:57 浏览: 122
这段代码是一个条件语句,根据`self.analysis_combo`控件当前选择的文本来执行不同的代码块。
如果选择的是“时域分析”,则会将一个DataFrame类型的数据转换成字符串,并将其存储在`table_string`变量中。然后,它创建了一个8x6英寸大小的图形对象,并将其存储在`fig`和`ax`变量中。接下来,它设置了绘图的标题为“时域分析结果”。然后,它隐藏了图形对象的坐标轴,将表格字符串添加到图形对象的指定位置,使用指定的边框样式和颜色来包围表格字符串,并将绘图保存为PNG格式的图像文件。最后,它将图像文件加载到`self.figure_label2`标签中,以在GUI应用程序中显示图像。
如果选择的是“频域分析”,则会从`data_file`中加载数据,并将其第二列存储到`data`数组中。然后,它将`data`数组转换为NumPy数组并存储到`signal`变量中。在信号处理中,“采样频率”通常是指信号在时间上采样的频率,即每秒采样的次数。但是,在这段代码中没有给出“采样频率”的具体含义或用途,可能需要根据具体的上下文来理解。
相关问题
# convert dataframe to string table_string = df.to_string(index=False) fig, ax = plt.subplots(figsize=(8, 6)) plt.title('时域分析结果')什么意思
这段代码的作用是将一个DataFrame类型的数据转换成字符串,并将其存储在`table_string`变量中。然后,它创建了一个8x6英寸大小的图形对象,并将其存储在`fig`和`ax`变量中。接下来,它设置了绘图的标题为“时域分析结果”('时域'是指时间域,即信号随时间的变化)。但是,这段代码只是设置了标题,并没有绘制任何内容。如果想要将数据可视化,需要在这段代码后面添加相应的绘图函数及其参数。
import requests from bs4 import BeautifulSoup import matplotlib.pyplot as plt import pandas as pd PLAYERS_LIMIT = 25 TABLE_CLASS_NAME = "players_table" plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def get_top_players_scores(limit=PLAYERS_LIMIT, table_class_name=TABLE_CLASS_NAME): url = "https://nba.hupu.com/stats/players" response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") players = [] scores = [] table = soup.find("table", class_=table_class_name) rows = table.find_all("tr") for row in rows[1:limit+1]: cols = row.find_all("td") player = cols[1].text.strip() score_range = cols[4].text.strip() score_parts = score_range.split("-") min_score = float(score_parts[0]) max_score = float(score_parts[1]) score = int((min_score + max_score) / 2) players.append(player) scores.append(score) return players, scores def plot_top_players_scores(players, scores): data = {"Player": players, "Score": scores} df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(12, 6)) ax.bar(players, scores, color='green', alpha=0.6) ax.set_xlabel('球员', fontsize=12) ax.set_ylabel('得分', fontsize=12) ax.set_title('NBA球员得分', fontsize=14) plt.xticks(rotation=45, ha='right', fontsize=8) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) for i, score in enumerate(scores): ax.text(i, score+0.5, str(score), ha='center', va='bottom') writer = pd.ExcelWriter('plot_top_players_scores.xlsx') df.to_excel(writer, index=False) writer.save() fig.tight_layout() plt.show() if __name__ == "__main__": players, scores = get_top_players_scores() plot_top_players_scores(players, scores)这段代码生成的excel损坏
这可能是因为在代码中将Excel文件的写操作放在了`for`循环中,每次迭代都会打开并写入Excel文件,导致Excel文件损坏。应该将Excel文件的写操作放在循环外面,只在循环结束后执行一次即可。修改后的代码如下:
```python
import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import pandas as pd
PLAYERS_LIMIT = 25
TABLE_CLASS_NAME = "players_table"
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def get_top_players_scores(limit=PLAYERS_LIMIT, table_class_name=TABLE_CLASS_NAME):
url = "https://nba.hupu.com/stats/players"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
players = []
scores = []
table = soup.find("table", class_=table_class_name)
rows = table.find_all("tr")
for row in rows[1:limit+1]:
cols = row.find_all("td")
player = cols[1].text.strip()
score_range = cols[4].text.strip()
score_parts = score_range.split("-")
min_score = float(score_parts[0])
max_score = float(score_parts[1])
score = int((min_score + max_score) / 2)
players.append(player)
scores.append(score)
return players, scores
def plot_top_players_scores(players, scores):
data = {"Player": players, "Score": scores}
df = pd.DataFrame(data)
fig, ax = plt.subplots(figsize=(12, 6))
ax.bar(players, scores, color='green', alpha=0.6)
ax.set_xlabel('球员', fontsize=12)
ax.set_ylabel('得分', fontsize=12)
ax.set_title('NBA球员得分', fontsize=14)
plt.xticks(rotation=45, ha='right', fontsize=8)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
for i, score in enumerate(scores):
ax.text(i, score+0.5, str(score), ha='center', va='bottom')
writer = pd.ExcelWriter('plot_top_players_scores.xlsx')
df.to_excel(writer, index=False)
writer.save()
fig.tight_layout()
plt.show()
if __name__ == "__main__":
players, scores = get_top_players_scores()
plot_top_players_scores(players, scores)
```
这样修改后,Excel文件的写操作只会在循环结束后执行一次,不会出现损坏的问题。
阅读全文