使用c语言数制转换问题,要求:键盘输入一个十进制数,输出对应的二级制数。

时间: 2023-05-29 15:05:13 浏览: 91
以下是使用C语言编写的十进制数转二进制数的代码: ```c #include <stdio.h> int main() { int decimalNum, binaryNum = 0, base = 1, remainder; printf("Enter a decimal number: "); scanf("%d", &decimalNum); while (decimalNum > 0) { remainder = decimalNum % 2; binaryNum = binaryNum + remainder * base; decimalNum = decimalNum / 2; base = base * 10; } printf("Binary number is: %d", binaryNum); return 0; } ``` 在上面的代码中,我们首先从用户那里获取一个十进制数,然后使用while循环将它转换为二进制数。在每次迭代中,我们计算十进制数的模数(即余数),并将其乘以适当的基数(1、10、100、1000等),并将其添加到二进制数中。最后,我们将十进制数除以2以进行下一次迭代,并将基数乘以10以准备下一个位。最后,我们打印出二进制数。 例如,如果输入的十进制数为10,则输出的二进制数为1010。
相关问题

数制转换问题,要求:键盘输入一个十进制数,输出对应的二级制数。

可以使用除2取余法进行十进制到二进制的转换,具体步骤如下: 1. 输入一个十进制数,保存到变量dec中。 2. 定义一个空字符串bin,用于存储二进制数。 3. 进行除2取余的循环操作,直到商为0为止。每次循环的步骤如下: a. 计算商和余数,分别保存到变量q和r中:q=dec//2,r=dec%2。 b. 将余数r转换为字符串类型,然后添加到bin字符串的头部:bin = str(r) + bin。 c. 将商q赋值给dec,继续下一次循环。 4. 输出二进制数bin。 下面是Python程序示例: ```python dec = int(input("请输入一个十进制数:")) bin = "" while dec > 0: q = dec // 2 r = dec % 2 bin = str(r) + bin dec = q print("转换后的二进制数为:", bin) ``` 例如,输入十进制数13,输出二进制数1101。

数制转换问题,要求:键盘输入一个十进制数,输出对应的二级制数。如:65à1000001B (要求采用顺序栈或链栈实现,或者分别实现。)

以下是使用顺序栈实现的代码: ```python class Stack: def __init__(self): self.items = [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def is_empty(self): return len(self.items) == 0 def decimal_to_binary(decimal): stack = Stack() while decimal > 0: remainder = decimal % 2 stack.push(remainder) decimal //= 2 binary = "" while not stack.is_empty(): binary += str(stack.pop()) return binary + "B" decimal = int(input("请输入一个十进制数:")) binary = decimal_to_binary(decimal) print(f"{decimal}的二进制表示为:{binary}") ``` 以下是使用链栈实现的代码: ```python class Node: def __init__(self, data): self.data = data self.next = None class Stack: def __init__(self): self.top = None def push(self, item): node = Node(item) node.next = self.top self.top = node def pop(self): if self.is_empty(): raise Exception("栈已空") item = self.top.data self.top = self.top.next return item def is_empty(self): return self.top is None def decimal_to_binary(decimal): stack = Stack() while decimal > 0: remainder = decimal % 2 stack.push(remainder) decimal //= 2 binary = "" while not stack.is_empty(): binary += str(stack.pop()) return binary + "B" decimal = int(input("请输入一个十进制数:")) binary = decimal_to_binary(decimal) print(f"{decimal}的二进制表示为:{binary}") ```

相关推荐

最新推荐

recommend-type

c#智能进制转换器 十进制数字转换为二进制 ,八进制,十六进制

在C#编程中,开发一个智能进制转换器可以让我们轻松地将十进制数字转换为二进制、八进制和十六进制。这个任务要求我们实现自定义的算法,而不是依赖内置的函数或库,以确保程序的通用性和不受数字范围限制。 首先,...
recommend-type

数制转换实现对x向任意的一个非M进制的数的转换

本实验的目标是设计一个程序,能够实现任意M进制数到十进制的转换,以及将这个十进制数转换为任意非M进制的数。 首先,我们来理解如何将一个M进制数转换为十进制。给定一个M进制数x,我们可以使用权重累加的方法,...
recommend-type

基于java的人事管理系统设计与实现.docx

基于java的人事管理系统设计与实现.docx
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【图结构优化】:在JavaScript中实现与提升性能的策略

![【图结构优化】:在JavaScript中实现与提升性能的策略](https://d14b9ctw0m6fid.cloudfront.net/ugblog/wp-content/uploads/2020/10/4.png) # 1. 图结构基础与JavaScript中的应用场景 ## 图结构基础概念 图是一种非线性数据结构,由一系列节点(顶点)和连接节点的边组成。它能够用来模拟复杂的关系网络,比如社交网络、互联网、交通网络等。在图结构中,有无向图和有向图之分,分别用来表示关系是否具有方向性。 ## 图结构的基本操作 图结构的操作包括添加或删除节点和边、寻找两个节点之间的路径、计算顶点的度