BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x,SE}: NameError: name 'SE' is not defined
时间: 2024-05-24 22:14:26 浏览: 136
这错误提示表明您在代码中使用了SE,但是该名称未被定义。SE是指Squeeze-and-Excitation,它是一种用于增强神经网络性能的技术。要解决此问题,您需要确保您的代码中包含SE的定义或导入语句。您可能需要查看文档或示例代码来确定正确的导入语句。另外,您还需要检查是否正确安装了所有必需的库和依赖项。
相关问题
解释class SPP(nn.Layer): def __init__(self, ch_in, ch_out, k, pool_size, act='swish', data_format='NCHW'): super(SPP, self).__init__() self.pool = [] self.data_format = data_format for i, size in enumerate(pool_size): pool = self.add_sublayer( 'pool{}'.format(i), nn.MaxPool2D( kernel_size=size, stride=1, padding=size // 2, data_format=data_format, ceil_mode=False)) self.pool.append(pool) self.conv = ConvBNLayer(ch_in, ch_out, k, padding=k // 2, act=act)
这是一个定义了一个 SPP(Spatial Pyramid Pooling)层的类,用于深度学习中的卷积神经网络。SPP层可以从不同尺度的特征图中提取出固定大小的特征表示,从而使得网络对于不同大小的输入具有更好的鲁棒性。这个类的初始化函数中,首先调用了父类的构造函数,然后定义了一个空的池化层列表 self.pool,并根据输入的池化尺寸 pool_size 构造了多个最大池化层,并将其添加到 self.pool 中。最后定义了一个卷积层 self.conv,用于将池化后的特征图进行卷积和激活处理,得到最终的特征表示。
一句句解释class SPP(nn.Layer): def __init__(self, ch_in, ch_out, k, pool_size, act='swish', data_format='NCHW'): super(SPP, self).__init__() self.pool = [] self.data_format = data_format for i, size in enumerate(pool_size): pool = self.add_sublayer( 'pool{}'.format(i), nn.MaxPool2D( kernel_size=size, stride=1, padding=size // 2, data_format=data_format, ceil_mode=False)) self.pool.append(pool) self.conv = ConvBNLayer(ch_in, ch_out, k, padding=k // 2, act=act) def forward(self, x): outs = [x] for pool in self.pool: outs.append(pool(x)) if self.data_format == 'NCHW': y = paddle.concat(outs, axis=1) else: y = paddle.concat(outs, axis=-1) y = self.conv(y) return y
这段代码定义了一个SPP(Spatial Pyramid Pooling)模块的类,它继承自PaddlePaddle的nn.Layer类。
在初始化函数中,该类接收5个参数:输入通道数ch_in、输出通道数ch_out、卷积核大小k、池化层大小pool_size、激活函数act(默认为swish)和数据格式data_format(默认为NCHW)。
该类定义了一个列表self.pool来存储不同大小的最大池化层,将这些池化层添加为该类的子层。然后定义了一个卷积层self.conv,该卷积层的输入通道数为SPP模块的输出通道数,输出通道数为ch_out,卷积核大小为k,激活函数为act。
在前向传播函数forward中,将输入x添加到一个列表outs中,然后遍历self.pool列表中的池化层,对输入x进行最大池化,并将池化结果添加到outs中。最后再将outs中的所有结果按照数据格式进行拼接,然后通过self.conv进行卷积操作,得到SPP模块的输出结果y,返回y。
阅读全文