pytorch部分代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s # self.weight = weight if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) # 0,1 batch_m = batch_m.view((x.size(0), 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) # return F.cross_entropy(self.s*output, target, weight=self.weight) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() loss = criterion_train(output, targets) # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 # loss = torch.nan_to_num(criterion_train(output, target_a, target_b, lam)) # 计算loss # loss = lam * criterion_train(output, target_a) + (1 - lam) * criterion_train(output, target_b) # 计算 mixup 后的损失函数 scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 梯度裁剪,防止梯度爆炸 scaler.step(optimizer) # 更新下一次迭代的scaler scaler.update() # 否则,直接反向传播求梯度 else: # loss = criterion_train(output, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) optimizer.step() 报错:) File "/home/adminis/hpy/ConvNextV2_Demo/models/losses.py", line 48, in forward output = torch.where(index, x_m, x) RuntimeError: expected scalar type float but found c10::Half
时间: 2024-02-16 10:04:12 浏览: 276
这个错误通常是由于在定义 `index` 和 `index_float` 时,没有指定数据类型,导致数据类型不匹配。可以尝试将 `index` 和 `index_float` 的数据类型都指定为 `torch.cuda.FloatTensor`。修改代码如下:
```python
index = torch.zeros_like(x, dtype=torch.uint8).cuda()
index_float = index.type(torch.cuda.FloatTensor)
```
这样就可以保证 `index` 和 `index_float` 的数据类型都是 `torch.cuda.FloatTensor`,与其他计算中使用的数据类型匹配。
相关问题
Focal loss代码如下:class FocalLoss(nn.Module): def __init__(self, alpha=1, gamma=2, weight=None): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: log_probs = F.log_softmax(x, dim=-1) probs = torch.exp(log_probs) focal_loss = -self.alpha * (torch.pow((1 - probs), self.gamma)) * log_probs loss = torch.sum(target * focal_loss, dim=-1) return loss.mean() LDAM loss 代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) LMF loss 是Focal loss 和LDAM loss两个损失函数的加权求和,请用pytorch代码实现LMF损失函数
下面是LMF损失函数的PyTorch代码实现,其中alpha和beta是Focal loss和LDAM loss的权重,需要根据具体情况进行调整:
```
class LMF(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30, alpha=0.25, gamma=2, beta=0.5):
super(LMF, self).__init__()
self.focal_loss = FocalLoss(alpha=alpha, gamma=gamma, weight=weight)
self.ldam_loss = LDAMLoss(cls_num_list, max_m=max_m, weight=weight, s=s)
self.alpha = alpha
self.beta = beta
def forward(self, x, target):
focal_loss = self.focal_loss(x, target)
ldam_loss = self.ldam_loss(x, target)
loss = self.alpha * focal_loss + self.beta * ldam_loss
return loss
```
其中,输入参数x是模型的输出,target是真实标签。cls_num_list是每个类别的样本数列表,max_m是LDAM loss中的一个参数,weight是交叉熵损失函数中的权重,s是LDAM loss中的一个参数,alpha和beta是Focal loss和LDAM loss的权重。最终返回LMF损失函数的值。
Focal 损失函数代码如下:def focal_loss(input_values, gamma): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class FocalLoss(nn.Module): def __init__(self, weight=None, gamma=0.): super(FocalLoss, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input, target): return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) LDAM损失函数代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) Large Margin aware Focal (LMF) 损失函数是 Focal 损失函数和 LDAM损失函数加权的线性组合,帮我用pytorch代码实现LMF损失函数
以下是LMF损失函数的PyTorch实现:
```
class LMF_Loss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30, gamma=2.0, alpha=0.25):
super(LMF_Loss, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.focal_loss = FocalLoss(weight=weight, gamma=gamma)
self.ldam_loss = LDAMLoss(cls_num_list, max_m=max_m, weight=weight, s=s)
def forward(self, x, target):
focal_loss = self.focal_loss(x, target)
ldam_loss = self.ldam_loss(x, target)
lmf_loss = self.alpha * focal_loss + (1 - self.alpha) * ldam_loss.pow(self.gamma)
return lmf_loss.mean()
```
其中,`gamma`为Focal Loss的超参数,`alpha`为LMF Loss中Focal Loss的权重。其他参数含义与原始的Focal Loss和LDAM Loss相同。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)