函数曲线的离散化图java

时间: 2023-06-13 18:05:17 浏览: 85
以下是一个简单的Java程序,用于将函数曲线离散化并绘制成图表。该程序使用了JFreeChart库来绘制图表。 ```java import org.jfree.chart.ChartFactory; import org.jfree.chart.ChartFrame; import org.jfree.chart.JFreeChart; import org.jfree.chart.plot.PlotOrientation; import org.jfree.data.xy.XYSeries; import org.jfree.data.xy.XYSeriesCollection; public class Discretization { public static void main(String[] args) { // 定义函数曲线 double[] xValues = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; double[] yValues = {0, 0.5, 1, 2.5, 3, 4, 3.5, 2, 1.5, 1, 0.5}; // 将函数曲线离散化 double[] xDiscrete = new double[101]; double[] yDiscrete = new double[101]; for (int i = 0; i <= 100; i++) { double x = i * 0.1; xDiscrete[i] = x; yDiscrete[i] = interpolate(x, xValues, yValues); } // 绘制图表 XYSeriesCollection dataset = new XYSeriesCollection(); XYSeries series = new XYSeries("Function Curve"); for (int i = 0; i < xDiscrete.length; i++) { series.add(xDiscrete[i], yDiscrete[i]); } dataset.addSeries(series); JFreeChart chart = ChartFactory.createXYLineChart("Discretization", "x", "y", dataset, PlotOrientation.VERTICAL, true, true, false); ChartFrame frame = new ChartFrame("Discretization", chart); frame.pack(); frame.setVisible(true); } private static double interpolate(double x, double[] xValues, double[] yValues) { int i = 0; while (i < xValues.length && xValues[i] < x) { i++; } if (i == 0) { return yValues[0]; } else if (i == xValues.length) { return yValues[xValues.length - 1]; } else { double x1 = xValues[i - 1]; double x2 = xValues[i]; double y1 = yValues[i - 1]; double y2 = yValues[i]; return y1 + (x - x1) / (x2 - x1) * (y2 - y1); } } } ``` 该程序定义了一个简单的函数曲线,并使用线性插值方法将其离散化为101个点。然后使用JFreeChart库创建了一个XY线图表,并将离散化后的函数曲线添加到数据集中。最后,该程序使用ChartFrame显示了图表。 你可以根据自己的需求修改函数曲线的定义和离散化方法,以及图表的设置。

相关推荐

最新推荐

recommend-type

利用Python将数值型特征进行离散化操作的方法

今天小编就为大家分享一篇利用Python将数值型特征进行离散化操作的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

图像变换之傅里叶_离散余弦变换.ppt

该PPT介绍了图像变换领域中的两个基础的变换, 傅里叶变换和离散余弦变换. 涉及内容包括一维傅里叶变换, 二维离散傅里叶变换, 二维离散傅里叶变换的性质, 快速傅里叶变换, 傅里叶变换在图像处理中的应用; 离散余弦...
recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依