# 划分区间 # 训练集历史区间、中间区间、标签区间 train_history_field = off_train[ off_train['date_received'].isin(pd.date_range('2016/3/2', periods=60))] # [20160302,20160501) train_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/5/1', periods=15))] # [20160501,20160516) train_label_field = off_train[ off_train['date_received'].isin(pd.date_range('2016/5/16', periods=31))] # [20160516,20160616) # 验证集历史区间、中间区间、标签区间 validate_history_field = off_train[ off_train['date_received'].isin(pd.date_range('2016/1/16', periods=60))] # [20160116,20160316) validate_middle_field = off_train[ off_train['date'].isin(pd.date_range('2016/3/16', periods=15))] # [20160316,20160331) validate_label_field = off_train[ off_train['date_received'].isin(pd.date_range('2016/3/31', periods=31))] # [20160331,20160501) # 测试集历史区间、中间区间、标签区间 test_history_field = off_train[ off_train['date_received'].isin(pd.date_range('2016/4/17', periods=60))] # [20160417,20160616) test_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/6/16', periods=15))] # [20160616,20160701) test_label_field = off_test.copy() # [20160701,20160801)

时间: 2023-06-16 17:07:19 浏览: 114
这段代码是用来划分训练集、验证集和测试集的。其中,训练集的历史区间、中间区间和标签区间分别是从2016年3月2日到2016年5月1日、从2016年5月1日到2016年5月16日、从2016年5月16日到2016年6月16日;验证集的历史区间、中间区间和标签区间分别是从2016年1月16日到2016年3月16日、从2016年3月16日到2016年3月31日、从2016年3月31日到2016年5月1日;测试集的历史区间、中间区间和标签区间分别是从2016年4月17日到2016年6月16日、从2016年6月16日到2016年7月1日、从2016年7月1日到2016年8月1日。这里的"off_train"和"off_test"是指原始数据集。
相关问题

# 划分区间 # 训练集历史区间、中间区间、标签区间 train_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/3/2', periods=60))] # [20160302,20160501) train_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/5/1', periods=15))] # [20160501,20160516) train_label_field = off_train[off_train['date_received'].isin(pd.date_range('2016/5/16', periods=31))] # [20160516,20160616) # 验证集历史区间、中间区间、标签区间 validate_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/1/16', periods=60))] # [20160116,20160316) validate_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/3/16', periods=15))] # [20160316,20160331) validate_label_field = off_train[off_train['date_received'].isin(pd.date_range('2016/3/31', periods=31))] # [20160331,20160501) # 测试集历史区间、中间区间、标签区间 test_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/4/17', periods=60))] # [20160417,20160616) test_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/6/16', periods=15))] # [20160616,20160701) test_label_field = off_test.copy() # [20160701,20160801)将其改为一个函数

可以将这段代码封装成一个函数,以便在需要时可以直接调用。以下是一个可能的实现: ```python import pandas as pd def split_dataset(off_train, off_test): # 划分区间 # 训练集历史区间、中间区间、标签区间 train_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/3/2', periods=60))] # [20160302,20160501) train_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/5/1', periods=15))] # [20160501,20160516) train_label_field = off_train[off_train['date_received'].isin(pd.date_range('2016/5/16', periods=31))] # [20160516,20160616) # 验证集历史区间、中间区间、标签区间 validate_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/1/16', periods=60))] # [20160116,20160316) validate_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/3/16', periods=15))] # [20160316,20160331) validate_label_field = off_train[off_train['date_received'].isin(pd.date_range('2016/3/31', periods=31))] # [20160331,20160501) # 测试集历史区间、中间区间、标签区间 test_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/4/17', periods=60))] # [20160417,20160616) test_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/6/16', periods=15))] # [20160616,20160701) test_label_field = off_test.copy() # [20160701,20160801) return (train_history_field, train_middle_field, train_label_field, validate_history_field, validate_middle_field, validate_label_field, test_history_field, test_middle_field, test_label_field) ``` 调用该函数时,需要传入 `off_train` 和 `off_test` 两个数据集作为参数,函数将返回九个数据集,分别对应训练集、验证集和测试集的历史区间、中间区间和标签区间。

dataset1 = off_train[(off_train.date_received>='20160414')&(off_train.date_received<='20160514')] feature1 = off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))] 请将以上代码按以下方式划分 # 测试集历史区间、中间区间、标签区间 test_history_field = off_train[ off_train['date_received'].isin(pd.date_range('2016/4/17', periods=60))] # [20160417,20160616) test_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/6/16', periods=15))] # [20160616,20160701) test_label_field = off_test.copy() # [20160701,20160801)

以上代码中,dataset1是标签区间,feature1是历史区间+中间区间。因此,可以按以下方式划分: - 测试集历史区间:feature1中的历史区间,即off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))]; - 测试集中间区间:test_middle_field,即off_train[off_train['date'].isin(pd.date_range('2016/6/16', periods=15))]; - 测试集标签区间:test_label_field,即off_test.copy()。
阅读全文

相关推荐

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

如果在训练过程中发现`val_categorical_accuracy`始终为0,可能的原因是训练集和验证集的划分导致了数据分布的不均衡。例如,某些类别的样本可能只存在于验证集中,而训练集中没有,这样模型在训练时无法学习到这些...
recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

在TensorFlow 2.0中,`tf.keras.Model.load_weights()` 是一个非常有用的函数,用于加载预先训练好的权重到模型中,以便继续训练或进行预测。然而,在实际操作中,可能会遇到一些报错,本文将针对这些问题提供解决...
recommend-type

在keras中model.fit_generator()和model.fit()的区别说明

在Keras库中,`model.fit()`和`model.fit_generator()`是两个用于训练深度学习模型的关键函数。它们都用于更新模型的权重以最小化损失函数,但针对不同类型的输入数据和场景有不同的适用性。 首先,`model.fit()`是...
recommend-type

pytorch之inception_v3的实现案例

数据集的组织方式遵循ImageFolder结构,即数据集分为训练集和验证集,分别位于"data_dir"下的"train"和"val"子目录中。每个类别有自己的子目录,例如,对于两类数据1和2,会有两个对应的子目录。为了训练模型,我们...
recommend-type

pandas中read_csv的缺失值处理方式

df = pd.read_csv('train.csv', na_values=['Unknown', 'Not Given']) ``` 这样,Pandas会把'Unknown'和'Not Given'也当作缺失值处理。 3. **keep_default_na参数**:默认情况下,`read_csv`会使用上述的默认...
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。