用模拟退火算法实现01背包问题的代码
时间: 2024-05-08 15:21:58 浏览: 73
以下是用模拟退火算法实现01背包问题的Python代码:
```python
import random
import math
def simulated_annealing(values, weights, max_weight, temperature=1000, cooling_rate=0.99, stopping_temperature=1e-8):
# 初始化
current_state = [random.randint(0, 1) for _ in range(len(values))]
best_state = current_state
current_fitness = evaluate(current_state, values, weights, max_weight)
best_fitness = current_fitness
# 迭代搜索
while temperature > stopping_temperature:
# 生成新状态
new_state = generate_neighbor(current_state)
new_fitness = evaluate(new_state, values, weights, max_weight)
# 判断是否接受新状态
delta_fitness = new_fitness - current_fitness
if delta_fitness > 0 or math.exp(delta_fitness / temperature) > random.uniform(0, 1):
current_state = new_state
current_fitness = new_fitness
# 更新最优解
if current_fitness > best_fitness:
best_state = current_state
best_fitness = current_fitness
# 降温
temperature *= cooling_rate
return best_state, best_fitness
def generate_neighbor(state):
# 随机选择一个物品翻转其状态
new_state = state[:]
index = random.randint(0, len(state) - 1)
new_state[index] = 1 - new_state[index]
return new_state
def evaluate(state, values, weights, max_weight):
# 计算状态的价值和重量
total_value = sum([v * s for v, s in zip(values, state)])
total_weight = sum([w * s for w, s in zip(weights, state)])
# 超出背包容量则价值为负无穷
if total_weight > max_weight:
return -math.inf
return total_value
# 示例
values = [10, 8, 4, 5, 3, 7]
weights = [4, 5, 12, 9, 1, 13]
max_weight = 30
best_state, best_fitness = simulated_annealing(values, weights, max_weight)
print("最优解:", best_state)
print("最优值:", best_fitness)
```
其中,`simulated_annealing` 函数是模拟退火算法的主函数,`generate_neighbor` 函数用于生成邻居状态,`evaluate` 函数用于评估状态的价值和重量。在示例中,我们使用了一个包含6个物品的01背包问题,背包最大容量为30。运行结果可能会因为随机数的不同而有所不同。
阅读全文