请编写完整代码
时间: 2024-02-11 14:09:28 浏览: 65
好的,以下是基于MPI的Jacobi迭代求解拉普拉斯方程的完整代码:
```c++
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#define ROWS 1000
#define COLS 1000
#define EPSILON 0.001
#define MAX_ITERATIONS 10000
int main(int argc, char **argv) {
int rank, size;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// 计算本地区域的开始和结束行号
int local_rows = ROWS / size;
int start_row = rank * local_rows;
int end_row = (rank + 1) * local_rows - 1;
// 初始化本地数组
double **u = (double **)malloc((local_rows + 2) * sizeof(double *));
double **u_new = (double **)malloc((local_rows + 2) * sizeof(double *));
for (int i = 0; i < local_rows + 2; i++) {
u[i] = (double *)malloc(COLS * sizeof(double));
u_new[i] = (double *)malloc(COLS * sizeof(double));
for (int j = 0; j < COLS; j++) {
u[i][j] = 0.0;
u_new[i][j] = 0.0;
}
}
// 计算本地数组的边界
double left_boundary, right_boundary;
if (rank == 0) {
left_boundary = 1.0;
right_boundary = 0.0;
} else if (rank == size - 1) {
left_boundary = 0.0;
right_boundary = 1.0;
} else {
left_boundary = 0.0;
right_boundary = 0.0;
}
// 进行Jacobi迭代计算
double diff, global_diff;
int iterations = 0;
do {
// 交换边界数据
if (rank > 0) {
MPI_Sendrecv(u[1], COLS, MPI_DOUBLE, rank - 1, 0, u_new[0], COLS, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD, &status);
}
if (rank < size - 1) {
MPI_Sendrecv(u[local_rows], COLS, MPI_DOUBLE, rank + 1, 0, u_new[local_rows + 1], COLS, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD, &status);
}
// 进行Jacobi迭代计算
diff = 0.0;
for (int i = 1; i <= local_rows; i++) {
for (int j = 1; j < COLS - 1; j++) {
u_new[i][j] = 0.25 * (u[i - 1][j] + u[i + 1][j] + u[i][j - 1] + u[i][j + 1]);
if (i == 1) u_new[i - 1][j] = left_boundary;
if (i == local_rows) u_new[i + 1][j] = right_boundary;
diff += fabs(u_new[i][j] - u[i][j]);
}
}
// 更新本地数组
for (int i = 1; i <= local_rows; i++) {
for (int j = 1; j < COLS - 1; j++) {
u[i][j] = u_new[i][j];
}
}
// 计算全局误差
MPI_Allreduce(&diff, &global_diff, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
// 增加迭代次数
iterations++;
} while (global_diff > EPSILON && iterations < MAX_ITERATIONS);
// 输出结果
if (rank == 0) {
printf("Iterations: %d\n", iterations);
printf("Solution:\n");
for (int i = 1; i <= local_rows; i++) {
for (int j = 0; j < COLS; j++) {
printf("%f ", u[i][j]);
}
printf("\n");
}
}
// 释放本地数组
for (int i = 0; i < local_rows + 2; i++) {
free(u[i]);
free(u_new[i]);
}
free(u);
free(u_new);
MPI_Finalize();
return 0;
}
```
在程序中,我们使用了MPI_Sendrecv()函数进行边界数据的交换,使用MPI_Allreduce()函数计算全局误差。在输出结果时,我们只在rank为0的进程上输出。
另外,由于我们使用了动态内存分配,需要在程序结束时释放内存。
希望可以帮助您解决问题,有任何疑问欢迎继续追问!
阅读全文