请你告诉我代码层面如何实现ProxylessNAS 修改搜索空间?
时间: 2024-02-13 13:04:04 浏览: 73
网盘聚合搜索
要修改 ProxylessNAS 的搜索空间,需要在 `models/proxyless_nas/search_space` 目录下的 `search_space.py` 文件中进行修改。该文件定义了搜索空间的结构,包括候选的操作和它们的超参数范围等。
具体来说,你可以按照以下步骤进行修改:
1. 定义新的操作,或删除现有的操作。你可以在 `PRIMITIVES` 列表中添加或删除操作的名称,例如:
```python
PRIMITIVES = [
'none',
'skip_connect',
'sep_conv_3x3',
'sep_conv_5x5',
'dil_conv_3x3',
'dil_conv_5x5',
'max_pool_3x3',
'avg_pool_3x3',
'group_conv_3x3',
'group_conv_5x5',
'conv_7x1_1x7',
'conv_1x1',
'conv_3x3',
# 新添加的操作
'my_op',
]
```
2. 定义新的超参数范围,或修改现有的超参数范围。你可以在 `OPS` 字典中修改操作的超参数范围,例如:
```python
OPS = {
'none': lambda C, stride, affine: Zero(C, stride),
'skip_connect': lambda C, stride, affine: Identity(C, stride),
'sep_conv_3x3': lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
'sep_conv_5x5': lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
'dil_conv_3x3': lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine),
'dil_conv_5x5': lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine),
'max_pool_3x3': lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1),
'avg_pool_3x3': lambda C, stride, affine: nn.AvgPool2d(3, stride=stride, padding=1),
'group_conv_3x3': lambda C, stride, affine: GConv(C, C, 3, stride, 1, affine=affine),
'group_conv_5x5': lambda C, stride, affine: GConv(C, C, 5, stride, 2, affine=affine),
'conv_7x1_1x7': lambda C, stride, affine: nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1,7), stride=(1,stride), padding=(0,3), bias=False),
nn.Conv2d(C, C, (7,1), stride=(stride,1), padding=(3,0), bias=False),
nn.BatchNorm2d(C, affine=affine)
),
'conv_1x1': lambda C, stride, affine: Conv(C, C, 1, stride, 0, affine=affine),
'conv_3x3': lambda C, stride, affine: Conv(C, C, 3, stride, 1, affine=affine),
# 修改现有操作的超参数范围
'sep_conv_3x3': lambda C, stride, affine, eps=1e-3, momentum=0.1, affine_bn=True:
SepConv(C, C, 3, stride, 1, affine=affine, eps=eps, momentum=momentum, affine_bn=affine_bn),
# 定义新操作的超参数范围
'my_op': lambda C, stride, affine, my_param=0.1:
MyOp(C, C, 3, stride, 1, affine=affine, my_param=my_param),
}
```
3. 修改完毕后,重新运行训练或搜索脚本,即可使用修改后的搜索空间。
需要注意的是,修改搜索空间可能会对模型的性能产生影响,因此建议在修改前仔细评估并测试不同搜索空间的性能和效果。
阅读全文