Pytorch的标签平滑怎么使用,给一个具体的案例
时间: 2024-05-30 18:12:35 浏览: 157
为了避免过度拟合和提高模型泛化能力,标签平滑是一种有效的正则化方法。在Pytorch中,可以通过使用torch.nn.KLDivLoss()和F.log_softmax()函数来实现标签平滑。具体步骤如下:
1.定义损失函数:使用Kullback-Leibler散度计算损失
criterion = nn.KLDivLoss(reduction='batchmean')
2.对标签进行平滑处理:使用Softmax计算对数概率log_probabilities,再使用Exp函数进行反转
smooth_labels = torch.full(size=(batch_size, num_classes), fill_value=0.1/9).to(device)
smooth_labels.scatter_(dim=1, index=torch.unsqueeze(targets, dim=1), value=0.9)
3.计算输出和损失:使用模型的输出scores和第二步中处理后的标签进行计算
log_probabilities = F.log_softmax(scores, dim=1)
loss = criterion(log_probabilities, smooth_labels)
注意:这里使用了一个经典的案例-MNIST数据集,具体实现代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 导入数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=False)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=False)
batch_size = 128
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28*28, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 28*28)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Net().to(device)
# 定义损失函数和优化器
criterion = nn.KLDivLoss(reduction='batchmean')
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练和测试
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# 平滑标签
smooth_labels = torch.full(size=(batch_size, 10), fill_value=0.1/9).to(device)
smooth_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
# 前向传播和反向传播
optimizer.zero_grad()
outputs = model(images)
log_probabilities = F.log_softmax(outputs, dim=1)
loss = criterion(log_probabilities, smooth_labels)
loss.backward()
optimizer.step()
# 记录损失
train_loss += loss.item() * images.size(0)
# 打印训练信息
train_loss = train_loss / len(train_loader.dataset)
print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch+1, train_loss))
# 测试模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))
阅读全文