nn.CrossEntropyLoss()的用法和作用
时间: 2024-02-06 09:04:25 浏览: 87
nn.CrossEntropyLoss()是一个损失函数,主要用于多分类任务中,计算模型输出结果与真实标签之间的交叉熵损失。
使用方法如下:
```python
import torch.nn as nn
loss_fn = nn.CrossEntropyLoss()
# 计算损失,inputs为模型的输出结果,targets为真实标签
loss = loss_fn(inputs, targets)
```
其中,inputs是模型的输出结果,通常为一个张量,形状为(batch_size, num_classes),表示每个样本属于每个类别的概率值;targets是真实标签,通常为一个张量,形状为(batch_size,),表示每个样本的真实类别。
nn.CrossEntropyLoss()的作用是帮助我们评估模型输出结果与真实标签之间的差异,进而通过反向传播更新模型参数,使得模型能够更好地逼近真实分布。在训练过程中,我们通常会使用该损失函数来计算模型的损失,并根据损失大小来调整模型参数,以提高模型的准确率。
相关问题
nn.CrossEntropyLoss()与F.CrossEntropyLoss()
nn.CrossEntropyLoss()和F.CrossEntropyLoss()是PyTorch中用于计算交叉熵损失的两个函数。它们的功能是相同的,但用法略有不同。
nn.CrossEntropyLoss()是一个类,可以实例化为一个对象,然后可以调用该对象的forward()方法来计算交叉熵损失。该方法接受两个参数:输入数据和目标数据。输入数据是一个(batch_size, num_classes)的张量,表示模型的输出概率分布;目标数据是一个(batch_size,)的张量,表示实际的类别标签。
F.CrossEntropyLoss()是一个函数,可以直接调用来计算交叉熵损失。该函数接受三个参数:模型的输出概率分布、实际的类别标签和一个可选的权重张量。与nn.CrossEntropyLoss()相比,F.CrossEntropyLoss()不需要实例化对象,直接调用即可。
nn.CrossEntropyLoss函数用法?
nn.CrossEntropyLoss函数是PyTorch中常用的用于计算交叉熵损失的函数。它常用于多分类问题中,特别是当目标类别是互斥的情况下。
该函数的常用参数如下:
- 输入:通常是一个(batch_size, num_classes)大小的张量。该张量表示模型输出的预测结果。
- 目标:通常是一个(batch_size,)大小的张量,包含了每个样本的真实类别标签。
使用示例:
```python
import torch
import torch.nn as nn
# 模型输出
outputs = torch.tensor([[0.2, 0.5, 0.3], [0.7, 0.1, 0.2]])
# 真实标签
targets = torch.tensor([1, 0])
# 创建损失函数
loss_fn = nn.CrossEntropyLoss()
# 计算损失
loss = loss_fn(outputs, targets)
print(loss)
```
在上述示例中,outputs是模型的预测输出,targets是真实标签。通过将这两个张量作为参数传递给nn.CrossEntropyLoss函数,即可计算出交叉熵损失。最后打印出的loss即为计算得到的损失值。
阅读全文